Getting Profit and Loss Make Easy From Binance

Overview

Getting Profit and Loss Make Easy From Binance

I have been in Binance Automated Trading for some time and have generated a lot of transaction records, so I want to see my historical profit and loss records (for each cryptocurrency). But Binance does not provide this information.

After searching for a period of time, various useful code sections were integrated, and then presented graphically with Poltly.

The usage is very simple, just follow the following operations to get the total profit and loss in historical.

Requirement

python-binance

pip install python-binance

plotly

pip install plotly==4.14.3

jupyter-dash

pip install jupyter-dash

Usage

from calcuation import profit_loss
from chart import RealizedProfitLoss
from binance.client import Client
import pandas as pd

key = 'Your API Key'
secret = 'Yout Secert Key'

client = Client(key, secret)

Get the profit and loss of BTCUSDT from 2020-01-01 to 2021-12-21

pnl = profit_loss(market='BNB-USDT', client=client, showlog=True)

output

Get the profit and loss chart of [crypto pair] every 30 days from 2020-01 to 2021-12

from datetime import datetime

dates_df = pd.DataFrame(index=[datetime(2020,1,1), datetime(2021,12,31)])
dates = dates_df.resample('d').first().index[::30]
profilio = []
for s in ['BTC-USDT', 'BNB-USDT', 'LINK-USDT', 'ADA-USDT', 'CAKE-USDT', 'UNI-USDT', 'ETH-USDT']:        
    for start_date, end_date in zip(dates[:], dates[1:]):        
        pnl = profit_loss(market=s, start_date=start_date.strftime("%Y-%m-%d"), end_date=end_date.strftime("%Y-%m-%d"), client=client)
        profilio.append({'date': end_date, 'symbol':s, 'pnl':pnl['total_profit(quote)']})    
    
profilio_df = pd.DataFrame(profilio)
profilio_df = profilio_df.rename({'symbol':'stock_id'}, axis='columns')    
RealizedProfitLoss(profilio_df).run_dash()

Pnl DashBoard

Open source time series library for Python

PyFlux PyFlux is an open source time series library for Python. The library has a good array of modern time series models, as well as a flexible array

Ross Taylor 2k Jan 02, 2023
XManager: A framework for managing machine learning experiments 🧑‍🔬

XManager is a platform for packaging, running and keeping track of machine learning experiments. It currently enables one to launch experiments locally or on Google Cloud Platform (GCP). Interaction

DeepMind 620 Dec 27, 2022
vortex particles for simulating smoke in 2d

vortex-particles-method-2d vortex particles for simulating smoke in 2d -vortexparticles_s

12 Aug 23, 2022
Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.

Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r

RGF-team 363 Dec 14, 2022
Azure MLOps (v2) solution accelerators.

Azure MLOps (v2) solution accelerator Welcome to the MLOps (v2) solution accelerator repository! This project is intended to serve as the starting poi

Microsoft Azure 233 Jan 01, 2023
ML-powered Loan-Marketer Customer Filtering Engine

In Loan-Marketing business employees are required to call the user's to buy loans of several fields and in several magnitudes. If employees are calling everybody in the network it is also very length

Sagnik Roy 13 Jul 02, 2022
Python Automated Machine Learning library for tabular data.

Simple but powerful Automated Machine Learning library for tabular data. It uses efficient in-memory SAP HANA algorithms to automate routine Data Scie

Daniel Khromov 47 Dec 17, 2022
Python package for concise, transparent, and accurate predictive modeling

Python package for concise, transparent, and accurate predictive modeling. All sklearn-compatible and easy to use. 📚 docs • 📖 demo notebooks Modern

Chandan Singh 983 Jan 01, 2023
TIANCHI Purchase Redemption Forecast Challenge

TIANCHI Purchase Redemption Forecast Challenge

Haorui HE 4 Aug 26, 2022
A Python toolbox to churn out organic alkalinity calculations with minimal brain engagement.

Organic Alkalinity Sausage Machine A Python toolbox to churn out organic alkalinity calculations with minimal brain engagement. Getting started To mak

Charles Turner 1 Feb 01, 2022
BioPy is a collection (in-progress) of biologically-inspired algorithms written in Python

BioPy is a collection (in-progress) of biologically-inspired algorithms written in Python. Some of the algorithms included are mor

Jared M. Smith 40 Aug 26, 2022
Machine Learning Course with Python:

A Machine Learning Course with Python Table of Contents Download Free Deep Learning Resource Guide Slack Group Introduction Motivation Machine Learnin

Instill AI 6.9k Jan 03, 2023
using Machine Learning Algorithm to classification AppleStore application

AppleStore-classification-with-Machine-learning-Algo- using Machine Learning Algorithm to classification AppleStore application. the first step : 1: p

Mohammed Hussien 2 May 02, 2022
Laporan Proyek Machine Learning - Azhar Rizki Zulma

Laporan Proyek Machine Learning - Azhar Rizki Zulma Project Overview Domain proyek yang dipilih dalam proyek machine learning ini adalah mengenai hibu

Azhar Rizki Zulma 6 Mar 12, 2022
Formulae is a Python library that implements Wilkinson's formulas for mixed-effects models.

formulae formulae is a Python library that implements Wilkinson's formulas for mixed-effects models. The main difference with other implementations li

34 Dec 21, 2022
scikit-learn models hyperparameters tuning and feature selection, using evolutionary algorithms.

Sklearn-genetic-opt scikit-learn models hyperparameters tuning and feature selection, using evolutionary algorithms. This is meant to be an alternativ

Rodrigo Arenas 180 Dec 20, 2022
This repo includes some graph-based CTR prediction models and other representative baselines.

Graph-based CTR prediction This is a repository designed for graph-based CTR prediction methods, it includes our graph-based CTR prediction methods: F

Big Data and Multi-modal Computing Group, CRIPAC 47 Dec 30, 2022
A handy tool for common machine learning models' hyper-parameter tuning.

Common machine learning models' hyperparameter tuning This repo is for a collection of hyper-parameter tuning for "common" machine learning models, in

Kevin Hu 2 Jan 27, 2022
Ml based project which uses regression technique to predict the price.

Price-Predictor Ml based project which uses regression technique to predict the price. I have used various regression models and finds the model with

Garvit Verma 1 Jul 09, 2022
Databricks Certified Associate Spark Developer preparation toolkit to setup single node Standalone Spark Cluster along with material in the form of Jupyter Notebooks.

Databricks Certification Spark Databricks Certified Associate Spark Developer preparation toolkit to setup single node Standalone Spark Cluster along

19 Dec 13, 2022