Python Automated Machine Learning library for tabular data.

Overview

Read the Docs Lines of code GitHub issues GitHub Repo stars GitHub contributors


Logo

Simple but powerful Automated Machine Learning library for tabular data. It uses efficient in-memory SAP HANA algorithms to automate routine Data Science tasks.
📚 Explore the docs »

🐞 Report Bug · 🆕 Request Feature

Table of Contents

  1. About The Project
  2. Getting Started
  3. Usage
  4. Roadmap
  5. Contributing
  6. License
  7. Contact

About the project

Disclaimer

This library is an open-source research project and is not part of any official SAP products.

What's this?

This is a simple but accurate Automated Machine Learning library. Based on SAP HANA powerful in-memory algorithms, it provides high accuracy in multiple machine learning tasks. Our library also uses numerous data preprocessing functions to automate routine data cleaning tasks. So, hana_automl goes through all AutoML steps and makes Data Science work easier.

What is SAP HANA?

From www.sap.com: SAP HANA is a high-performance in-memory database that speeds data-driven, real-time decisions and actions.

Web app

https://share.streamlit.io/dan0nchik/sap-hana-automl/main/web.py

Documentation

https://sap-hana-automl.readthedocs.io/en/latest/index.html

Benchmarks

https://github.com/dan0nchik/SAP-HANA-AutoML/blob/main/comparison_openml.ipynb

ML tasks:

  • Binary classification
  • Regression
  • Multiclass classification
  • Forecasting

Steps automated:

  • Data exploration
  • Data preparation
  • Feature engineering
  • Model selection
  • Model training
  • Hyperparameter tuning

👇 By the end of summer 2021, blue part will be fully automated by our library Logo

Clients

Streamlit client Streamlit client

Built With

Getting Started

To get a package up and running, follow these simple steps.

Prerequisites

Make sure you have the following:

  1. Setup SAP HANA (skip this step if you have an instance with PAL enabled). There are 2 ways to do that.
    In HANA Cloud:

    • Create a free trial account
    • Setup an instance
    • Enable PAL - Predictive Analysis Library. It is vital to enable it because we use their algorithms.

    In Virtual Machine:

    • Rent a virtual machine in Azure, AWS, Google Cloud, etc.
    • Install HANA instance there or on your PC (if you have >32 Gb RAM).
    • Enable PAL - Predictive Analysis Library. It is vital to enable it because we use their algorithms.
  2. Installed software

  • Python > 3.6
    Skip this step if python --version returns > 3.6
  • Cython
    pip3 install Cython

Installation

There are 2 ways to install the library

  • Stable: from pypi
    pip3 install hana_automl
  • Latest: from the repository
    pip3 install https://github.com/dan0nchik/SAP-HANA-AutoML/archive/dev.zip
    Note: latest version may contain bugs, be careful!

After installation

Check that PAL (Predictive Analysis Library) is installed and roles are granted

  • Read docs section about that.
  • If you don't want to read docs, run this code
    from hana_automl.utils.scripts import setup_user
    from hana_ml.dataframe import ConnectionContext
    
    cc = ConnectionContext(address='address', user='user', password='password', port=39015)
    
    # replace with credentials of user that will be created or granted a role to run PAL.
    setup_user(connection_context=cc, username='user', password="password")

Usage

From code

Our library in a few lines of code

Connect to database.

from hana_ml.dataframe import ConnectionContext

cc = ConnectionContext(address='address',
                     user='username',
                     password='password',
                     port=1234)

Create AutoML model and fit it.

from hana_automl.automl import AutoML

model = AutoML(cc)
model.fit(
  file_path='path to training dataset', # it may be HANA table/view, or pandas DataFrame
  steps=10, # number of iterations
  target='target', # column to predict
  time_limit=120 # time limit in seconds
)

Predict.

model.predict(
file_path='path to test dataset',
id_column='ID',
verbose=1
)

For more examples, please refer to the Documentation

How to run Streamlit client

  1. Clone repository: git clone https://github.com/dan0nchik/SAP-HANA-AutoML.git
  2. Install dependencies: pip3 install -r requirements.txt
  3. Run GUI: streamlit run ./web.py

Roadmap

See the open issues for a list of proposed features (and known issues). Feel free to report any bugs :)

Contributing

Any contributions you make are greatly appreciated 👏 !

  1. Fork the Project

  2. Create your Feature Branch (git checkout -b feature/NewFeature)

  3. Install dependencies

    pip3 install Cython
    pip3 install -r requirements.txt
  4. Create credentials.py file in tests directory Your files should look like this:

    SAP-HANA-AutoML
    │   README.md
    │   all other files   
    │   .....
    |
    └───tests
        │   test files...
        │   credentials.py
    

    Copy and paste this piece of code there and replace it with your credentials:

    host = "host"
    user = "username"
    password = "password"
    port = 39015 # or any port you need
    schema = "your schema"

    Don't worry, this file is in .gitignore, so your credentials won't be seen by anyone.

  5. Make some changes

  6. Write tests that cover your code in tests directory

  7. Run tests (under SAP-HANA-AutoML directory)

    pytest
  8. Commit your changes (git commit -m 'Add some amazing features')

  9. Push to the branch (git push origin feature/AmazingFeature)

  10. Open a Pull Request

License

Distributed under the MIT License. See LICENSE for more information.
Don't really understand license? Check out the MIT license summary.

Contact

Authors: @While-true-codeanything, @DbusAI, @dan0nchik

Project Link: https://github.com/dan0nchik/SAP-HANA-AutoML

Owner
Daniel Khromov
Learning Swift, C#, and Data Science
Daniel Khromov
A simple machine learning python sign language detection project.

SST Coursework 2022 About the app A python application that utilises the tensorflow object detection algorithm to achieve automatic detection of ameri

Xavier Koh 2 Jun 30, 2022
The Emergence of Individuality

The Emergence of Individuality

16 Jul 20, 2022
Lightning ⚡️ fast forecasting with statistical and econometric models.

Nixtla Statistical ⚡️ Forecast Lightning fast forecasting with statistical and econometric models StatsForecast offers a collection of widely used uni

Nixtla 2.1k Dec 29, 2022
Simulation of early COVID-19 using SIR model and variants (SEIR ...).

COVID-19-simulation Simulation of early COVID-19 using SIR model and variants (SEIR ...). Made by the Laboratory of Sustainable Life Assessment (GYRO)

José Paulo Pereira das Dores Savioli 1 Nov 17, 2021
Lseng-iseng eksplor Machine Learning dengan menggunakan library Scikit-Learn

Kalo dengar istilah ML, biasanya rada ambigu. Soalnya punya beberapa kepanjangan, seperti Mobile Legend, Makan Lontong, Ma**ng L*v* dan lain-lain. Tapi pada repo ini membahas Machine Learning :)

Alfiyanto Kondolele 1 Apr 06, 2022
XGBoost-Ray is a distributed backend for XGBoost, built on top of distributed computing framework Ray.

XGBoost-Ray is a distributed backend for XGBoost, built on top of distributed computing framework Ray.

92 Dec 14, 2022
Practical Time-Series Analysis, published by Packt

Practical Time-Series Analysis This is the code repository for Practical Time-Series Analysis, published by Packt. It contains all the supporting proj

Packt 325 Dec 23, 2022
Markov bot - A Writing bot based on Markov Chain for Data Structure Lab

基于马尔可夫链的写作机器人 前端 用html/css完成 Demo展示(已给出文本的相应展示) 用户提供相关的语料库后训练的成果 后端 要完成的几个接口 解析文

DysprosiumDy 9 May 05, 2022
TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters.

TensorFlowOnSpark TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark clusters. By combining salient features from the T

Yahoo 3.8k Jan 04, 2023
hgboost - Hyperoptimized Gradient Boosting

hgboost is short for Hyperoptimized Gradient Boosting and is a python package for hyperparameter optimization for xgboost, catboost and lightboost using cross-validation, and evaluating the results o

Erdogan Taskesen 34 Jan 03, 2023
Mixing up the Invariant Information clustering architecture, with self supervised concepts from SimCLR and MoCo approaches

Self Supervised clusterer Combined IIC, and Moco architectures, with some SimCLR notions, to get state of the art unsupervised clustering while retain

Bendidi Ihab 9 Feb 13, 2022
Arquivos do curso online sobre a estatística voltada para ciência de dados e aprendizado de máquina.

Estatistica para Ciência de Dados e Machine Learning Arquivos do curso online sobre a estatística voltada para ciência de dados e aprendizado de máqui

Renan Barbosa 1 Jan 10, 2022
Tutorials, examples, collections, and everything else that falls into the categories: pattern classification, machine learning, and data mining

**Tutorials, examples, collections, and everything else that falls into the categories: pattern classification, machine learning, and data mining.** S

Sebastian Raschka 4k Dec 30, 2022
Distributed Deep learning with Keras & Spark

Elephas: Distributed Deep Learning with Keras & Spark Elephas is an extension of Keras, which allows you to run distributed deep learning models at sc

Max Pumperla 1.6k Dec 29, 2022
Python module for performing linear regression for data with measurement errors and intrinsic scatter

Linear regression for data with measurement errors and intrinsic scatter (BCES) Python module for performing robust linear regression on (X,Y) data po

Rodrigo Nemmen 56 Sep 27, 2022
Bayesian Additive Regression Trees For Python

BartPy Introduction BartPy is a pure python implementation of the Bayesian additive regressions trees model of Chipman et al [1]. Reasons to use BART

187 Dec 16, 2022
Combines Bayesian analyses from many datasets.

PosteriorStacker Combines Bayesian analyses from many datasets. Introduction Method Tutorial Output plot and files Introduction Fitting a model to a d

Johannes Buchner 19 Feb 13, 2022
A visual dataflow programming language for sklearn

Persimmon What is it? Persimmon is a visual dataflow language for creating sklearn pipelines. It represents functions as blocks, inputs and outputs ar

Álvaro Bermejo 194 Jan 04, 2023
A handy tool for common machine learning models' hyper-parameter tuning.

Common machine learning models' hyperparameter tuning This repo is for a collection of hyper-parameter tuning for "common" machine learning models, in

Kevin Hu 2 Jan 27, 2022
mlpack: a scalable C++ machine learning library --

a fast, flexible machine learning library Home | Documentation | Doxygen | Community | Help | IRC Chat Download: current stable version (3.4.2) mlpack

mlpack 4.2k Jan 01, 2023