Machine Learning Course with Python:

Overview

A Machine Learning Course with Python

https://img.shields.io/badge/contributions-welcome-brightgreen.svg?style=flat https://badges.frapsoft.com/os/v2/open-source.png?v=103 https://img.shields.io/twitter/follow/machinemindset.svg?label=Follow&style=social

Table of Contents

Download Free Deep Learning Resource Guide

Slack Group

Introduction

The purpose of this project is to provide a comprehensive and yet simple course in Machine Learning using Python.

Motivation

Machine Learning, as a tool for Artificial Intelligence, is one of the most widely adopted scientific fields. A considerable amount of literature has been published on Machine Learning. The purpose of this project is to provide the most important aspects of Machine Learning by presenting a series of simple and yet comprehensive tutorials using Python. In this project, we built our tutorials using many different well-known Machine Learning frameworks such as Scikit-learn. In this project you will learn:

  • What is the definition of Machine Learning?
  • When it started and what is the trending evolution?
  • What are the Machine Learning categories and subcategories?
  • What are the mostly used Machine Learning algorithms and how to implement them?

Machine Learning

Title Document
An Introduction to Machine Learning Overview

Machine Learning Basics

_img/intro.png
Title Code Document
Linear Regression Python Tutorial
Overfitting / Underfitting Python Tutorial
Regularization Python Tutorial
Cross-Validation Python Tutorial

Supervised learning

_img/supervised.gif
Title Code Document
Decision Trees Python Tutorial
K-Nearest Neighbors Python Tutorial
Naive Bayes Python Tutorial
Logistic Regression Python Tutorial
Support Vector Machines Python Tutorial

Unsupervised learning

_img/unsupervised.gif
Title Code Document
Clustering Python Tutorial
Principal Components Analysis Python Tutorial

Deep Learning

_img/deeplearning.png
Title Code Document
Neural Networks Overview Python Tutorial
Convolutional Neural Networks Python Tutorial
Autoencoders Python Tutorial
Recurrent Neural Networks Python IPython

Pull Request Process

Please consider the following criterions in order to help us in a better way:

  1. The pull request is mainly expected to be a link suggestion.
  2. Please make sure your suggested resources are not obsolete or broken.
  3. Ensure any install or build dependencies are removed before the end of the layer when doing a build and creating a pull request.
  4. Add comments with details of changes to the interface, this includes new environment variables, exposed ports, useful file locations and container parameters.
  5. You may merge the Pull Request in once you have the sign-off of at least one other developer, or if you do not have permission to do that, you may request the owner to merge it for you if you believe all checks are passed.

Final Note

We are looking forward to your kind feedback. Please help us to improve this open source project and make our work better. For contribution, please create a pull request and we will investigate it promptly. Once again, we appreciate your kind feedback and support.

Developers

Creator: Machine Learning Mindset [Blog, GitHub, Twitter]

Supervisor: Amirsina Torfi [GitHub, Personal Website, Linkedin ]

Developers: Brendan Sherman*, James E Hopkins* [Linkedin], Zac Smith [Linkedin]

NOTE: This project has been developed as a capstone project offered by [CS 4624 Multimedia/ Hypertext course at Virginia Tech] and Supervised and supported by [Machine Learning Mindset].

*: equally contributed

Citation

If you found this course useful, please kindly consider citing it as below:

@software{amirsina_torfi_2019_3585763,
  author       = {Amirsina Torfi and
                  Brendan Sherman and
                  Jay Hopkins and
                  Eric Wynn and
                  hokie45 and
                  Frederik De Bleser and
                  李明岳 and
                  Samuel Husso and
                  Alain},
  title        = {{machinelearningmindset/machine-learning-course:
                   Machine Learning with Python}},
  month        = dec,
  year         = 2019,
  publisher    = {Zenodo},
  version      = {1.0},
  doi          = {10.5281/zenodo.3585763},
  url          = {https://doi.org/10.5281/zenodo.3585763}
}
Comments
  • OF and LR updates

    OF and LR updates

    Taking into account review notes. Having trouble setting up my python environment, so I have not been able to test the code yet. I hope to fix that today/tomorrow. Fixed the table in LR.

    opened by BroccoliHijinx 11
  • Multilayer Perceptron write-up

    Multilayer Perceptron write-up

    Submitting a PR now to allow for comments on what is done. There are placeholders for what is left to be done, and I should be able to do that tomorrow.

    Left to do;

    images and associated text

    More on backprop

    Defining and explaining actual MLPs (most right now is on NN basics)

    opened by BroccoliHijinx 3
  • Addressed comments brought up in peer review

    Addressed comments brought up in peer review

    I decided to remove the multiple linear regression section because it seems beyond the scope of this module. Those images, MLR.png and MLR_POBF.png, can safely be removed from our image folder. I left a mention to it for completeness. I also added captions for all figures and equations to explain what they are.

    opened by b-sherman 3
  • Logistic Regression Files, some overfitting changes

    Logistic Regression Files, some overfitting changes

    Within Logistic Regression, I have a table that I cannot get working. I want to keep messing around with it, but I'm not sure what is wrong. I am using the rst basic table, but I think the spacing is off somehow.

    opened by BroccoliHijinx 3
  • Naive bayes question

    Naive bayes question

    Hi @astorfi , Thanks for your great work ! I'm a beginner of ML. Tonight when I learn Naive Bayes Classification in your tutorial, I found the Equation 1 in the tutorial is different from that in Wiki. I wonder which one is correct or both of them are right?

    image


    image

    Look forward to your reply.

    opened by suedroplet 2
  • Chinese Translation

    Chinese Translation

    Hi @astorfi , Thanks for your great work ! My friends and I have learned a lot here. China has a platform called KESCI (https://www.kesci.com). They provide algorithm competition opportunities for developers, which is similar to Kaggle, and self - training online environment to enhance their algorithmic ability. I am going to translate the whole series to Chinese and applied for a column to publish them on KESCI, as a series. Hope to get your permission. thanks.

    opened by Vivian0210 2
  • Overfitting rst file

    Overfitting rst file

    I don't think including code with this module makes much sense, so I just included a write-up. I tried to keep it short and simple, since this is something to keep in mind in the entire course.

    opened by BroccoliHijinx 2
  • Naive bayes

    Naive bayes

    I just created a new branch for the updated naive bayes files since the old one is very far behind now. Included are the images, code, and module text.

    opened by b-sherman 1
  • Linear regression

    Linear regression

    I redid all the linear regression code with a completely new data set to assure originality and because the existing scikit-learn ones are confusing to me so they are bound to be confusing to a new reader. I also changed all the images to reflect the new code. I tried to simplify the code as much as possible and only used the bare minimum number of references to scikit-learn functions. I also revised the rst document to reflect these changes. All generated images now have a link to the code I used to create them as well because it seemed like a good idea.

    opened by b-sherman 1
  • Updated linear_regression.rst

    Updated linear_regression.rst

    +Added a Motivation section that talks about what the problem is +Changed raw URLs into hyperlinks on smaller words +Added a Code section that links to the module code and talks about what it does +Added a Conclusion section to close out the module

    opened by b-sherman 1
  • Reference fixes

    Reference fixes

    Changed the "References" indent level in several modules to be consistent. Changed header casing in some modules to be consistent. Requesting merge so that the site can be updated for screenshots to include in the final project report.

    opened by b-sherman 0
Releases(1.0)
Owner
Instill AI
A company offering AI-based solutions to real-world applications.
Instill AI
Both social media sentiment and stock market data are crucial for stock price prediction

Relating-Social-Media-to-Stock-Movement-Public - We explore the application of Machine Learning for predicting the return of the stock by using the information of stock returns. A trading strategy ba

Vishal Singh Parmar 15 Oct 29, 2022
Predicting job salaries from ads - a Kaggle competition

Predicting job salaries from ads - a Kaggle competition

Zygmunt Zając 57 Oct 23, 2020
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.

Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree

CatBoost 6.9k Jan 05, 2023
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

152 Jan 02, 2023
This is an auto-ML tool specialized in detecting of outliers

Auto-ML tool specialized in detecting of outliers Description This tool will allows you, with a Dash visualization, to compare 10 models of machine le

1 Nov 03, 2021
a distributed deep learning platform

Apache SINGA Distributed deep learning system http://singa.apache.org Quick Start Installation Examples Issues JIRA tickets Code Analysis: Mailing Lis

The Apache Software Foundation 2.7k Jan 05, 2023
A data preprocessing and feature engineering script for a machine learning pipeline is prepared.

FEATURE ENGINEERING Business Problem: A data preprocessing and feature engineering script for a machine learning pipeline needs to be prepared. It is

Pinar Oner 7 Dec 18, 2021
50% faster, 50% less RAM Machine Learning. Numba rewritten Sklearn. SVD, NNMF, PCA, LinearReg, RidgeReg, Randomized, Truncated SVD/PCA, CSR Matrices all 50+% faster

[Due to the time taken @ uni, work + hell breaking loose in my life, since things have calmed down a bit, will continue commiting!!!] [By the way, I'm

Daniel Han-Chen 1.4k Jan 01, 2023
Meerkat provides fast and flexible data structures for working with complex machine learning datasets.

Meerkat makes it easier for ML practitioners to interact with high-dimensional, multi-modal data. It provides simple abstractions for data inspection, model evaluation and model training supported by

Robustness Gym 115 Dec 12, 2022
It is a forest of random projection trees

rpforest rpforest is a Python library for approximate nearest neighbours search: finding points in a high-dimensional space that are close to a given

Lyst 211 Dec 29, 2022
Greykite: A flexible, intuitive and fast forecasting library

The Greykite library provides flexible, intuitive and fast forecasts through its flagship algorithm, Silverkite.

LinkedIn 1.7k Jan 04, 2023
Uber Open Source 1.6k Dec 31, 2022
Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.

Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r

RGF-team 363 Dec 14, 2022
icepickle is to allow a safe way to serialize and deserialize linear scikit-learn models

icepickle It's a cooler way to store simple linear models. The goal of icepickle is to allow a safe way to serialize and deserialize linear scikit-lea

vincent d warmerdam 24 Dec 09, 2022
Decision tree is the most powerful and popular tool for classification and prediction

Diabetes Prediction Using Decision Tree Introduction Decision tree is the most powerful and popular tool for classification and prediction. A Decision

Arjun U 1 Jan 23, 2022
Module is created to build a spam filter using Python and the multinomial Naive Bayes algorithm.

Naive-Bayes Spam Classificator Module is created to build a spam filter using Python and the multinomial Naive Bayes algorithm. Main goal is to code a

Viktoria Maksymiuk 1 Jun 27, 2022
Machine Learning Study 혼자 해보기

Machine Learning Study 혼자 해보기 기여자 (Contributors) ✨ Teddy Lee 🏠 HongJaeKwon 🏠 Seungwoo Han 🏠 Tae Heon Kim 🏠 Steve Kwon 🏠 SW Song 🏠 K1A2 🏠 Wooil

Teddy Lee 1.7k Jan 01, 2023
cuML - RAPIDS Machine Learning Library

cuML - GPU Machine Learning Algorithms cuML is a suite of libraries that implement machine learning algorithms and mathematical primitives functions t

RAPIDS 3.1k Dec 28, 2022
Automatic extraction of relevant features from time series:

tsfresh This repository contains the TSFRESH python package. The abbreviation stands for "Time Series Feature extraction based on scalable hypothesis

Blue Yonder GmbH 7k Jan 06, 2023
Price forecasting of SGB and IRFC Bonds and comparing there returns

Project_Bonds Project Title : Price forecasting of SGB and IRFC Bonds and comparing there returns. Introduction of the Project The 2008-09 global fina

Tishya S 1 Oct 28, 2021