icepickle is to allow a safe way to serialize and deserialize linear scikit-learn models

Overview

icepickle

It's a cooler way to store simple linear models.

The goal of icepickle is to allow a safe way to serialize and deserialize linear scikit-learn models. Not only is this much safer, but it also allows for an interesting finetuning pattern that does not require a GPU.

Installation

You can install everything with pip:

python -m pip install icepickle

Usage

Let's say that you've gotten a linear model from scikit-learn trained on a dataset.

from sklearn.linear_model import LogisticRegression
from sklearn.datasets import load_wine

X, y = load_wine(return_X_y=True)

clf = LogisticRegression()
clf.fit(X, y)

Then you could use a pickle to save the model.

from joblib import dump, load

# You can save the classifier.
dump(clf, 'classifier.joblib')

# You can load it too.
clf_reloaded = load('classifier.joblib')

But this is unsafe. The scikit-learn documentations even warns about the security concerns and compatibility issues. The goal of this package is to offer a safe alternative to pickling for simple linear models. The coefficients will be saved in a .h5 file and can be loaded into a new regression model later.

from icepickle.linear_model import save_coefficients, load_coefficients

# You can save the classifier.
save_coefficients(clf, 'classifier.h5')

# You can create a new model, with new hyperparams.
clf_reloaded = LogisticRegression()

# Load the previously trained weights in.
load_coefficients(clf_reloaded, 'classifier.h5')

This is a lot safer and there's plenty of use-cases that could be handled this way.

There's a cool finetuning-trick we can do now too!

Finetuning

Assuming that you use a stateless featurizer in your pipeline, such as HashingVectorizer or language models from whatlies, you choose to pre-train your scikit-learn model beforehand and fine-tune it later using models that offer the .partial_fit()-api. If you're unfamiliar with this api, you might appreciate this course on calmcode.

This library also comes with utilities that makes it easier to finetune systems via the .partial_fit() API. In particular we offer partial pipeline components via the icepickle.pipeline submodule.

import pandas as pd
from sklearn.linear_model import SGDClassifier, LogisticRegression
from sklearn.feature_extraction.text import HashingVectorizer

from icepickle.linear_model import save_coefficients, load_coefficients
from icepickle.pipeline import make_partial_pipeline

url = "https://raw.githubusercontent.com/koaning/icepickle/main/datasets/imdb_subset.csv"
df = pd.read_csv(url)
X, y = list(df['text']), df['label']

# Train a pre-trained model.
pretrained = LogisticRegression()
pipe = make_partial_pipeline(HashingVectorizer(), pretrained)
pipe.fit(X, y)

# Save the coefficients, safely.
save_coefficients(pretrained, 'pretrained.h5')

# Create a new model using pre-trained weights.
finetuned = SGDClassifier()
load_coefficients(finetuned, 'pretrained.h5')
new_pipe = make_partial_pipeline(HashingVectorizer(), finetuned)

# This new model can be used for fine-tuning.
for i in range(10):
    # Inside this for-loop you could consider doing data-augmentation.
    new_pipe.partial_fit(X, y)
Supported Pipeline Parts

The following pipeline components are added.

from icepickle.pipeline import (
    PartialPipeline,
    PartialFeatureUnion,
    make_partial_pipeline,
    make_partial_union,
)

These tools allow you to declare pipelines that support .partial_fit. Note that components used in these pipelines all need to have .partial_fit() implemented.

Supported Scikit-Learn Models

We unit test against the following models in our save_coefficients and load_coefficients functions.

from sklearn.linear_model import (
    SGDClassifier,
    SGDRegressor,
    LinearRegression,
    LogisticRegression,
    PassiveAggressiveClassifier,
    PassiveAggressiveRegressor,
)
Owner
vincent d warmerdam
Solving problems involving data. Mostly NLP these days. AskMeAnything[tm].
vincent d warmerdam
Machine Learning for Time-Series with Python.Published by Packt

Machine-Learning-for-Time-Series-with-Python Become proficient in deriving insights from time-series data and analyzing a model’s performance Links Am

Packt 124 Dec 28, 2022
ClearML - Auto-Magical Suite of tools to streamline your ML workflow. Experiment Manager, MLOps and Data-Management

ClearML - Auto-Magical Suite of tools to streamline your ML workflow Experiment Manager, MLOps and Data-Management ClearML Formerly known as Allegro T

ClearML 4k Jan 09, 2023
fMRIprep Pipeline To Machine Learning

fMRIprep Pipeline To Machine Learning(Demo) 所有配置均在config.py文件下定义 前置环境(lilab) 各个节点均安装docker,并有fmripre的镜像 可以使用conda中的base环境(相应的第三份包之后更新) 1. fmriprep scr

Alien 3 Mar 08, 2022
Probabilistic programming framework that facilitates objective model selection for time-varying parameter models.

Time series analysis today is an important cornerstone of quantitative science in many disciplines, including natural and life sciences as well as eco

Christoph Mark 129 Dec 24, 2022
Breast-Cancer-Classification - Using SKLearn breast cancer dataset which contains 569 examples and 32 features classifying has been made with 6 different algorithms

Breast-Cancer-Classification - Using SKLearn breast cancer dataset which contains 569 examples and 32 features classifying has been made with 6 different algorithms

Mert Sezer Ardal 1 Jan 31, 2022
A simple machine learning package to cluster keywords in higher-level groups.

Simple Keyword Clusterer A simple machine learning package to cluster keywords in higher-level groups. Example: "Senior Frontend Engineer" -- "Fronte

Andrea D'Agostino 10 Dec 18, 2022
Deep Survival Machines - Fully Parametric Survival Regression

Package: dsm Python package dsm provides an API to train the Deep Survival Machines and associated models for problems in survival analysis. The under

Carnegie Mellon University Auton Lab 10 Dec 30, 2022
K-means clustering is a method used for clustering analysis, especially in data mining and statistics.

K Means Algorithm What is K Means This algorithm is an iterative algorithm that partitions the dataset according to their features into K number of pr

1 Nov 01, 2021
Kaggle Tweet Sentiment Extraction Competition: 1st place solution (Dark of the Moon team)

Kaggle Tweet Sentiment Extraction Competition: 1st place solution (Dark of the Moon team)

Artsem Zhyvalkouski 64 Nov 30, 2022
The Ultimate FREE Machine Learning Study Plan

The Ultimate FREE Machine Learning Study Plan

Patrick Loeber (Python Engineer) 2.5k Jan 05, 2023
机器学习检测webshell

ai-webshell-detect 机器学习检测webshell,利用textcnn+简单二分类网络,基于keras,花了七天 检测原理: 从文件熵 文件长度 文件语句提取出特征,然后文件熵与长度送入二分类网络,文件语句送入textcnn 项目原理,介绍,怎么做出来的

Huoji's 56 Dec 14, 2022
Cryptocurrency price prediction and exceptions in python

Cryptocurrency price prediction and exceptions in python This is a coursework on foundations of computing module Through this coursework i worked on m

Panagiotis Sotirellos 1 Nov 07, 2021
🤖 ⚡ scikit-learn tips

🤖 ⚡ scikit-learn tips New tips are posted on LinkedIn, Twitter, and Facebook. 👉 Sign up to receive 2 video tips by email every week! 👈 List of all

Kevin Markham 1.6k Jan 03, 2023
Predicting Baseball Metric Clusters: Clustering Application in Python Using scikit-learn

Clustering Clustering Application in Python Using scikit-learn This repository contains the prediction of baseball metric clusters using MLB Statcast

Tom Weichle 2 Apr 18, 2022
A collection of machine learning examples and tutorials.

machine_learning_examples A collection of machine learning examples and tutorials.

LazyProgrammer.me 7.1k Jan 01, 2023
Unofficial pytorch implementation of the paper "Context Reasoning Attention Network for Image Super-Resolution (ICCV 2021)"

CRAN Unofficial pytorch implementation of the paper "Context Reasoning Attention Network for Image Super-Resolution (ICCV 2021)" This code doesn't exa

4 Nov 11, 2021
Machine learning template for projects based on sklearn library.

Machine learning template for projects based on sklearn library.

Janez Lapajne 17 Oct 28, 2022
The easy way to combine mlflow, hydra and optuna into one machine learning pipeline.

mlflow_hydra_optuna_the_easy_way The easy way to combine mlflow, hydra and optuna into one machine learning pipeline. Objective TODO Usage 1. build do

shibuiwilliam 9 Sep 09, 2022
AtsPy: Automated Time Series Models in Python (by @firmai)

Automated Time Series Models in Python (AtsPy) SSRN Report Easily develop state of the art time series models to forecast univariate data series. Simp

Derek Snow 465 Jan 02, 2023
A series of Jupyter notebooks that walk you through the fundamentals of Machine Learning and Deep Learning in Python using Scikit-Learn, Keras and TensorFlow 2.

Machine Learning Notebooks, 3rd edition This project aims at teaching you the fundamentals of Machine Learning in python. It contains the example code

Aurélien Geron 1.6k Jan 05, 2023