Deep Survival Machines - Fully Parametric Survival Regression

Overview

Build Status     codecov     License: MIT     GitHub Repo stars

Package: dsm

Python package dsm provides an API to train the Deep Survival Machines and associated models for problems in survival analysis. The underlying model is implemented in pytorch.

For full documentation of the module, please see https://autonlab.github.io/DeepSurvivalMachines/

What is Survival Analysis?

Survival Analysis involves estimating when an event of interest, T would take place given some features or covariates X. In statistics and ML, these scenarios are modelled as regression to estimate the conditional survival distribution, P(T>t|X).
As compared to typical regression problems, Survival Analysis differs in two major ways:

  • The Event distribution, T has positive support i.e. T ∈ [0, ∞).
  • There is presence of censoring i.e. a large number of instances of data are lost to follow up.

Deep Survival Machines

Deep Survival Machines (DSM) is a fully parametric approach to model Time-to-Event outcomes in the presence of Censoring, first introduced in [1]. In the context of Healthcare ML and Biostatistics, this is known as 'Survival Analysis'. The key idea behind Deep Survival Machines is to model the underlying event outcome distribution as a mixure of some fixed ( K ) parametric distributions. The parameters of these mixture distributions as well as the mixing weights are modelled using Neural Networks.

Usage Example

from dsm import DeepSurvivalMachines
model = DeepSurvivalMachines()
model.fit()
model.predict_risk()

Recurrent Deep Survival Machines

Recurrent Deep Survival Machines (RDSM) builds on the original DSM model and allows for learning of representations of the input covariates using Recurrent Neural Networks like LSTMs, GRUs. Deep Recurrent Survival Machines is a natural fit to model problems where there are time dependendent covariates.

Deep Convolutional Survival Machines

Predictive maintenance and medical imaging sometimes requires to work with image streams. Deep Convolutional Survival Machines extends DSM and DRSM to learn representations of the input image data using convolutional layers. If working with streaming data, the learnt representations are then passed through an LSTM to model temporal dependencies before determining the underlying survival distributions.

⚠️ Not Implemented Yet!

Deep Cox Mixtures

The Cox Mixture involves the assumption that the survival function of the individual to be a mixture of K Cox Models. Conditioned on each subgroup Z=k; the PH assumptions are assumed to hold and the baseline hazard rates is determined non-parametrically using an spline-interpolated Breslow's estimator. For full details on Deep Cox Mixture, refer to the paper:

Deep Cox Mixtures for Survival Regression. Machine Learning in Health Conference (2021)

Installation

[email protected]:~$ git clone https://github.com/autonlab/DeepSurvivalMachines.git
[email protected]:~$ cd DeepSurvivalMachines
[email protected]:~$ pip install -r requirements.txt

Examples

  1. Deep Survival Machines on the SUPPORT Dataset
  2. Recurrent Deep Survival Machines on the PBC Dataset

References

Please cite the following papers if you are using the dsm package.

[1] Deep Survival Machines: Fully Parametric Survival Regression and Representation Learning for Censored Data with Competing Risks. IEEE Journal of Biomedical & Health Informatics (2021)

  @article{nagpal2021deep,
  title={Deep Survival Machines: Fully Parametric Survival Regression and\
  Representation Learning for Censored Data with Competing Risks},
  author={Nagpal, Chirag and Li, Xinyu and Dubrawski, Artur},
  journal={IEEE Journal of Biomedical and Health Informatics},
  year={2021}
  }

[2] Deep Parametric Time-to-Event Regression with Time-Varying Covariates. AAAI Spring Symposium (2021)

@InProceedings{pmlr-v146-nagpal21a,
  title = 	 {Deep Parametric Time-to-Event Regression with Time-Varying Covariates},
  author =       {Nagpal, Chirag and Jeanselme, Vincent and Dubrawski, Artur},
  booktitle = 	 {Proceedings of AAAI Spring Symposium on Survival Prediction - Algorithms, Challenges, and Applications 2021},
  series = 	 {Proceedings of Machine Learning Research},
  publisher =    {PMLR},
  }

[3] Deep Cox Mixtures for Survival Regression. Machine Learning for Healthcare (2021)

@InProceedings{nagpal2021dcm,
  title={Deep Cox Mixtures for Survival Regression},
  author={Nagpal, Chirag and Yadlowsky, Steve and Rostamzadeh, Negar and Heller, Katherine},
  booktitle={Proceedings of the 6th Machine Learning for Healthcare Conference},
  pages={674--708},
  year={2021},
  volume={149},
  series={Proceedings of Machine Learning Research},
  publisher={PMLR},
}

Compatibility

dsm requires python 3.5+ and pytorch 1.1+.

To evaluate performance using standard metrics dsm requires scikit-survival.

Contributing

dsm is on GitHub. Bug reports and pull requests are welcome.

License

MIT License

Copyright (c) 2020 Carnegie Mellon University, Auton Lab

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Owner
Carnegie Mellon University Auton Lab
Carnegie Mellon University Auton Lab
Microsoft 5.6k Jan 07, 2023
(3D): LeGO-LOAM, LIO-SAM, and LVI-SAM installation and application

SLAM-application: installation and test (3D): LeGO-LOAM, LIO-SAM, and LVI-SAM Tested on Quadruped robot in Gazebo ● Results: video, video2 Requirement

EungChang-Mason-Lee 203 Dec 26, 2022
Backtesting an algorithmic trading strategy using Machine Learning and Sentiment Analysis.

Trading Tesla with Machine Learning and Sentiment Analysis An interactive program to train a Random Forest Classifier to predict Tesla daily prices us

Renato Votto 31 Nov 17, 2022
Adversarial Framework for (non-) Parametric Image Stylisation Mosaics

Fully Adversarial Mosaics (FAMOS) Pytorch implementation of the paper "Copy the Old or Paint Anew? An Adversarial Framework for (non-) Parametric Imag

Zalando Research 120 Dec 24, 2022
Falken provides developers with a service that allows them to train AI that can play their games

Falken provides developers with a service that allows them to train AI that can play their games. Unlike traditional RL frameworks that learn through rewards or batches of offline training, Falken is

Google Research 223 Jan 03, 2023
Transform ML models into a native code with zero dependencies

m2cgen (Model 2 Code Generator) - is a lightweight library which provides an easy way to transpile trained statistical models into a native code

Bayes' Witnesses 2.3k Jan 03, 2023
LibTraffic is a unified, flexible and comprehensive traffic prediction library based on PyTorch

LibTraffic is a unified, flexible and comprehensive traffic prediction library, which provides researchers with a credibly experimental tool and a convenient development framework. Our library is imp

432 Jan 05, 2023
A series of Jupyter notebooks that walk you through the fundamentals of Machine Learning and Deep Learning in Python using Scikit-Learn, Keras and TensorFlow 2.

Machine Learning Notebooks, 3rd edition This project aims at teaching you the fundamentals of Machine Learning in python. It contains the example code

Aurélien Geron 1.6k Jan 05, 2023
A Collection of Conference & School Notes in Machine Learning 🦄📝🎉

Machine Learning Conference & Summer School Notes. 🦄📝🎉

558 Dec 28, 2022
Breast-Cancer-Classification - Using SKLearn breast cancer dataset which contains 569 examples and 32 features classifying has been made with 6 different algorithms

Breast-Cancer-Classification - Using SKLearn breast cancer dataset which contains 569 examples and 32 features classifying has been made with 6 different algorithms

Mert Sezer Ardal 1 Jan 31, 2022
This machine-learning algorithm takes in data from the last 60 days and tries to predict tomorrow's price of any crypto you ask it.

Crypto-Currency-Predictor This machine-learning algorithm takes in data from the last 60 days and tries to predict tomorrow's price of any crypto you

Hazim Arafa 6 Dec 04, 2022
Conducted ANOVA and Logistic regression analysis using matplot library to visualize the result.

Intro-to-Data-Science Conducted ANOVA and Logistic regression analysis. Project ANOVA The main aim of this project is to perform One-Way ANOVA analysi

Chris Yuan 1 Feb 06, 2022
stability-selection - A scikit-learn compatible implementation of stability selection

stability-selection - A scikit-learn compatible implementation of stability selection stability-selection is a Python implementation of the stability

185 Dec 03, 2022
Model Validation Toolkit is a collection of tools to assist with validating machine learning models prior to deploying them to production and monitoring them after deployment to production.

Model Validation Toolkit is a collection of tools to assist with validating machine learning models prior to deploying them to production and monitoring them after deployment to production.

FINRA 25 Dec 28, 2022
Tools for diffing and merging of Jupyter notebooks.

nbdime provides tools for diffing and merging of Jupyter Notebooks.

Project Jupyter 2.3k Jan 03, 2023
Toolkit for building machine learning models that generalize to unseen domains and are robust to privacy and other attacks.

Toolkit for Building Robust ML models that generalize to unseen domains (RobustDG) Divyat Mahajan, Shruti Tople, Amit Sharma Privacy & Causal Learning

Microsoft 149 Jan 06, 2023
Predicting diabetes over a five year period using logistic regression and the Pima First-Nation dataset

Diabetes This script uses the Pima First Nations dataset to create a model to predict whether or not an individual will develop Diabetes Mellitus Type

1 Mar 28, 2022
MegFlow - Efficient ML solutions for long-tailed demands.

Efficient ML solutions for long-tailed demands.

旷视天元 MegEngine 371 Dec 21, 2022
A machine learning model for Covid case prediction

CovidcasePrediction A machine learning model for Covid case prediction Problem Statement Using regression algorithms we can able to track the active c

VijayAadhithya2019rit 1 Feb 02, 2022
Python implementation of the rulefit algorithm

RuleFit Implementation of a rule based prediction algorithm based on the rulefit algorithm from Friedman and Popescu (PDF) The algorithm can be used f

Christoph Molnar 326 Jan 02, 2023