A simple guide to MLOps through ZenML and its various integrations.

Overview

ZenBytes

ZenML Logo

Join our Slack Slack Community and become part of the ZenML family
Give the main ZenML repo a Slack GitHub star to show your love

Sam

ZenBytes is a series of practical lessons about MLOps through ZenML and its various integrations. It is intended for people looking to learn about MLOps generally, and also practitioners specifically looking to learn more about ZenML.

🙏 About ZenML

ZenML is an extensible, open-source MLOps framework to create production-ready machine learning pipelines. Built for data scientists, it has a simple, flexible syntax, is cloud- and tool-agnostic, and has interfaces/abstractions that are catered towards ML workflows. The ZenML repository and Docs has more details.

ZenML is a good tool to learn MLOps because of two reasons:

🔹 ZenML focuses on being un-opinionated about underlying tooling and infrastructure across the MLOps stack. 🔹 ZenML presents itself as a pipeline tool, making all development in ZenML data-centric rather than model-centric.

🧱 Structure of Lessons

The lessons are structured in Chapters. Each chapter is a notebook that walks through and explains various concepts:

  • Chapter 0: Basics
  • Chapter 1: Building a ML(Ops) pipeline
  • Chapter 2: Transitioning across stacks
  • Coming soon: More chapters

💻 System Requirements

In order to run these lessons, you need to have some packages installed on your machine. Note you only need these for some parts, and you might get away with only Python and pip install requirements.txt for some parts of the codebase, but we recommend installing all these:

Currently, this will only run on UNIX systems.

package MacOS installation Linux installation
docker Docker Desktop for Mac Docker Engine for Linux
kubectl kubectl for mac kubectl for linux
k3d Brew Installation of k3d k3d installation linux

You might also need to install Anaconda to get the MLflow deployment to work.

🐍 Python Requirements

Once you've got the system requirements figured out, let's jump into the Python packages you need. Within the Python environment of your choice, run:

git clone https://github.com/zenml-io/zenbytes
pip install -r requirements.txt

If you are running the run.py script, you will also need to install some integrations using zenml:

zenml integration install sklearn -f
zenml integration install dash -f
zenml integration install evidently -f
zenml integration install mlflow -f
zenml integration install kubeflow -f
zenml integration install seldon -f

📓 Diving into the code

We're ready to go now. You can go through the notebook step-by-step guide:

jupyter notebook

🏁 Cleaning up when you're done

Once you are done running all notebooks you might want to stop all running processes. For this, run the following command. (This will tear down your k3d cluster and the local docker registry.)

zenml stack set aws_kubeflow_stack
zenml stack down -f
zenml stack set local_kubeflow_stack
zenml stack down -f

FAQ

  1. MacOS When starting the container registry for Kubeflow, I get an error about port 5000 not being available. OSError: [Errno 48] Address already in use

Solution: In order for Kubeflow to run, the docker container registry currently needs to be at port 5000. MacOS, however, uses port 5000 for the Airplay receiver. Here is a guide on how to fix this Freeing up port 5000.

Owner
ZenML
Building production MLOps tooling.
ZenML
Continuously evaluated, functional, incremental, time-series forecasting

timemachines Autonomous, univariate, k-step ahead time-series forecasting functions assigned Elo ratings You can: Use some of the functionality of a s

Peter Cotton 343 Jan 04, 2023
GroundSeg Clustering Optimized Kdtree

ground seg and clustering based on kitti velodyne data, and a additional optimized kdtree for knn and radius nn search

2 Dec 02, 2021
Kalman filter library

The kalman filter framework described here is an incredibly powerful tool for any optimization problem, but particularly for visual odometry, sensor fusion localization or SLAM.

comma.ai 276 Jan 01, 2023
Book Item Based Collaborative Filtering

Book-Item-Based-Collaborative-Filtering Collaborative filtering methods are used

Şebnem 3 Jan 06, 2022
Combines Bayesian analyses from many datasets.

PosteriorStacker Combines Bayesian analyses from many datasets. Introduction Method Tutorial Output plot and files Introduction Fitting a model to a d

Johannes Buchner 19 Feb 13, 2022
LightGBM + Optuna: no brainer

AutoLGBM LightGBM + Optuna: no brainer auto train lightgbm directly from CSV files auto tune lightgbm using optuna auto serve best lightgbm model usin

Rishiraj Acharya 22 Dec 15, 2022
CinnaMon is a Python library which offers a number of tools to detect, explain, and correct data drift in a machine learning system

CinnaMon is a Python library which offers a number of tools to detect, explain, and correct data drift in a machine learning system

Zelros 67 Dec 28, 2022
A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

Davis E. King 11.6k Jan 02, 2023
Machine Learning toolbox for Humans

Reproducible Experiment Platform (REP) REP is ipython-based environment for conducting data-driven research in a consistent and reproducible way. Main

Yandex 663 Dec 31, 2022
GAM timeseries modeling with auto-changepoint detection. Inspired by Facebook Prophet and implemented in PyMC3

pm-prophet Pymc3-based universal time series prediction and decomposition library (inspired by Facebook Prophet). However, while Faceook prophet is a

Luca Giacomel 314 Dec 25, 2022
ETNA – time series forecasting framework

ETNA Time Series Library Predict your time series the easiest way Homepage | Documentation | Tutorials | Contribution Guide | Release Notes ETNA is an

Tinkoff.AI 675 Jan 08, 2023
Book Recommender System Using Sci-kit learn N-neighbours

Model-Based-Recommender-Engine I created a book Recommender System using Sci-kit learn's N-neighbours algorithm for my model and the streamlit library

1 Jan 13, 2022
Send rockets to Mars with artificial intelligence(Genetic algorithm) in python.

Send Rockets To Mars With AI Send rockets to Mars with artificial intelligence(Genetic algorithm) in python. Tools Python 3 EasyDraw How to Play Insta

Mohammad Dori 3 Jul 15, 2022
Evidently helps analyze machine learning models during validation or production monitoring

Evidently helps analyze machine learning models during validation or production monitoring. The tool generates interactive visual reports and JSON profiles from pandas DataFrame or csv files. Current

Evidently AI 3.1k Jan 07, 2023
AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications.

AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy m

Robin 55 Dec 27, 2022
database for artificial intelligence/machine learning data

AIDB v0.0.1 database for artificial intelligence/machine learning data Overview aidb is a database designed for large dataset for machine learning pro

Aarush Gupta 1 Oct 24, 2021
A naive Bayes model for cancer classification using a set of documents

Naivebayes text classifcation model for cancer and noncancer documents Author: Alex King Purpose Requirements/files included How to use 1. Purpose The

Alex W King 1 Nov 24, 2021
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Dec 22, 2022
AutoX是一个高效的自动化机器学习工具,它主要针对于表格类型的数据挖掘竞赛。 它的特点包括: 效果出色、简单易用、通用、自动化、灵活。

English | 简体中文 AutoX是什么? AutoX一个高效的自动化机器学习工具,它主要针对于表格类型的数据挖掘竞赛。 它的特点包括: 效果出色: AutoX在多个kaggle数据集上,效果显著优于其他解决方案(见效果对比)。 简单易用: AutoX的接口和sklearn类似,方便上手使用。

4Paradigm 431 Dec 28, 2022
Short PhD seminar on Machine Learning Security (Adversarial Machine Learning)

Short PhD seminar on Machine Learning Security (Adversarial Machine Learning)

141 Dec 27, 2022