Code voor mijn Master project omtrent VideoBERT

Overview

Code voor masterproef

Deze repository bevat de code voor het project van mijn masterproef omtrent VideoBERT. De code in deze repository is gebaseerd op code van https://github.com/huggingface/transformers.

Stap 1: Verzameling van de trainingsdata

In deze stap worden de videos en tekstannotaties verzameld uit de HowTo100M dataset. Het bestand stap1/ids.txt bevat alle ids van de 47470 videos die opgenomen werden in de trainingsdata. De annotaties kunnen worden geraadpleegd via https://www.rocq.inria.fr/cluster-willow/amiech/howto100m/.

Stap 2: Transformatie van de data

In deze stap worden de videos getransformeerd door de frame rate aan te passen naar 10 fps en aan de tekst interpunctie toe te voegen. Voor de tekst kunnen de getrainde modellen voor interpunctie worden geraadpleegd via https://drive.google.com/drive/folders/0B7BsN5f2F1fZQnFsbzJ3TWxxMms.

Stap 3: Extractie van de I3D kenmerken

De I3D kenmerken van de videos worden in deze stap geconstrueerd a.d.h.v. het I3D netwerk. De folder stap3/checkpoint bevat het originele Tensorflow checkpoint voor het I3D model.

Stap 4: Clustering van de I3D kenmerken

In deze stap worden de I3D kenmerken gegroeppeerd a.d.h.v. hïerarchische k-means. De beste resultaten werden bekomen wanneer k=12 en h=4. Het bestand dat de cluster centroids bevat kan worden teruggevonden op https://drive.google.com/file/d/1i1mDYTnY-3SIkehEDGT5ip_xj0wXIZOr/view?usp=sharing.

Stap 5: BERT omvormen tot VideoBERT

Het startpunt van VideoBERT is het BERT model. De state_dict van het getrainde BERT model kan in Pytorch aangepast worden om rekening te houden met de nieuwe woordenschat. Bovendien werd er ook een nieuwe klasse VideoBertForPreTraining geconstrueerd om de trainingsregimes en inputmodaliteiten te realiseren.

Stap 6: Training van het model

In de laatste stap werd het model getraind. Hierbij werd er zowel gëexperimenteerd met een model dat geen rekening houdt met de nieuwe voorgestelde aligneringstaak, alsook een model dat hier wel rekening mee houdt. De verwerkte trainingsdata kan worden geraadpleegd via https://drive.google.com/file/d/1nlXQuRdzpsF9V95D8zPOnZz5miOw3FpV/view?usp=sharing.

Evaluatie

Voor de evalutie van het model werd de YouCookII validatie dataset gebruikt. Het getrainde model behaald gelijkaardige resultaten als het oorspronkelijke model op een zero-shot classificatietaak. De lijsten voor de werkwoorden en zelfstandige naamwoorden kunnen worden teruggevonden in evaluatie/verbs.txt en evaluatie/nouns.txt. Het bestand met de ground-truth YouCookII linguïstieke en visuele zinnen samen met de werkwoorden en zelfstandige naamwoorden kan worden teruggevonden op https://drive.google.com/file/d/1hxbiS3mrQdJLkXsPo23dwl4m-dnCMcfV/view?usp=sharing.

Resultaten met Originele Template Zin

Evaluatie Resultaten Met Originele Template Zin

Resultaten met Aangepaste Template Zin

Evaluatie Resultaten Met Aangepaste Template Zin

Kwalitatieve Resultaten

Tekst-naar-Video taak

Tekst naar Video

Video-naar-Tekst taak

Tekst naar Video

Praktische problemen

Enkele belangrijke praktische problemen die ervaren werden tijdens het implementatieproces:

  • Enorme vereist opslagcapaciteit voor de trainingsdata (videos+tekst)
  • Zeer veel rekenkracht nodig (in termen van GPUs), in dit geval werd 1 Cloud Tesla V100 GPU gebruikt
  • Batch size groot genoeg houden door technieken zoals gradient accumulation

Belangrijke bevindingen

  • Performantie van het model blijkt redelijk afhankelijk te zijn van de gebruikte template zin, wat een mogelijke tekortkoming is
  • De multimodale aard van het model lijkt wel degelijk een semantische correspondentie te leren tussen tekst en video (vergeleken met bv. alleen tekst)

Bronnen

De belangrijkste bronnen zijn:

Code associated with the "Data Augmentation using Pre-trained Transformer Models" paper

Data Augmentation using Pre-trained Transformer Models Code associated with the Data Augmentation using Pre-trained Transformer Models paper Code cont

44 Dec 31, 2022
GooAQ 🥑 : Google Answers to Google Questions!

This repository contains the code/data accompanying our recent work on long-form question answering.

AI2 112 Nov 06, 2022
一个基于Nonebot2和go-cqhttp的娱乐性qq机器人

Takker - 一个普通的QQ机器人 此项目为基于 Nonebot2 和 go-cqhttp 开发,以 Sqlite 作为数据库的QQ群娱乐机器人 关于 纯兴趣开发,部分功能借鉴了大佬们的代码,作为Q群的娱乐+功能性Bot 声明 此项目仅用于学习交流,请勿用于非法用途 这是开发者的第一个Pytho

风屿 79 Dec 29, 2022
A fast and lightweight python-based CTC beam search decoder for speech recognition.

pyctcdecode A fast and feature-rich CTC beam search decoder for speech recognition written in Python, providing n-gram (kenlm) language model support

Kensho 315 Dec 21, 2022
To create a deep learning model which can explain the content of an image in the form of speech through caption generation with attention mechanism on Flickr8K dataset.

To create a deep learning model which can explain the content of an image in the form of speech through caption generation with attention mechanism on Flickr8K dataset.

Ragesh Hajela 0 Feb 08, 2022
Toward Model Interpretability in Medical NLP

Toward Model Interpretability in Medical NLP LING380: Topics in Computational Linguistics Final Project James Cross ( 1 Mar 04, 2022

Python package to easily retrain OpenAI's GPT-2 text-generating model on new texts

gpt-2-simple A simple Python package that wraps existing model fine-tuning and generation scripts for OpenAI's GPT-2 text generation model (specifical

Max Woolf 3.1k Jan 07, 2023
Shirt Bot is a discord bot which uses GPT-3 to generate text

SHIRT BOT · Shirt Bot is a discord bot which uses GPT-3 to generate text. Made by Cyclcrclicly#3420 (474183744685604865) on Discord. Support Server EX

31 Oct 31, 2022
초성 해석기 based on ko-BART

초성 해석기 개요 한국어 초성만으로 이루어진 문장을 입력하면, 완성된 문장을 예측하는 초성 해석기입니다. 초성: ㄴㄴ ㄴㄹ ㅈㅇㅎ 예측 문장: 나는 너를 좋아해 모델 모델은 SKT-AI에서 공개한 Ko-BART를 이용합니다. 데이터 문장 단위로 이루어진 아무 코퍼스나

Dawoon Jung 29 Oct 28, 2022
Research code for the paper "Fine-tuning wav2vec2 for speaker recognition"

Fine-tuning wav2vec2 for speaker recognition This is the code used to run the experiments in https://arxiv.org/abs/2109.15053. Detailed logs of each t

Nik 103 Dec 26, 2022
A modular Karton Framework service that unpacks common packers like UPX and others using the Qiling Framework.

Unpacker Karton Service A modular Karton Framework service that unpacks common packers like UPX and others using the Qiling Framework. This project is

c3rb3ru5 45 Jan 05, 2023
Ongoing research training transformer language models at scale, including: BERT & GPT-2

What is this fork of Megatron-LM and Megatron-DeepSpeed This is a detached fork of https://github.com/microsoft/Megatron-DeepSpeed, which in itself is

BigScience Workshop 316 Jan 03, 2023
Unofficial implementation of Google's FNet: Mixing Tokens with Fourier Transforms

FNet: Mixing Tokens with Fourier Transforms Pytorch implementation of Fnet : Mixing Tokens with Fourier Transforms. Citation: @misc{leethorp2021fnet,

Rishikesh (ऋषिकेश) 217 Dec 05, 2022
숭실대학교 컴퓨터학부 전공종합설계프로젝트

✨ 시각장애인을 위한 버스도착 알림 장치 ✨ 👀 개요 현대 사회에서 대중교통 위치 정보를 이용하여 사람들이 간단하게 이용할 대중교통의 정보를 얻고 쉽게 대중교통을 이용할 수 있다. 해당 정보는 각종 어플리케이션과 대중교통 이용시설에서 위치 정보를 제공하고 있지만 시각

taegyun 3 Jan 25, 2022
KakaoBrain KoGPT (Korean Generative Pre-trained Transformer)

KoGPT KoGPT (Korean Generative Pre-trained Transformer) https://github.com/kakaobrain/kogpt https://huggingface.co/kakaobrain/kogpt Model Descriptions

Kakao Brain 797 Dec 26, 2022
Training code of Spatial Time Memory Network. Semi-supervised video object segmentation.

Training-code-of-STM This repository fully reproduces Space-Time Memory Networks Performance on Davis17 val set&Weights backbone training stage traini

haochen wang 128 Dec 11, 2022
Modular and extensible speech recognition library leveraging pytorch-lightning and hydra.

Lightning ASR Modular and extensible speech recognition library leveraging pytorch-lightning and hydra What is Lightning ASR • Installation • Get Star

Soohwan Kim 40 Sep 19, 2022
Data manipulation and transformation for audio signal processing, powered by PyTorch

torchaudio: an audio library for PyTorch The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the

1.9k Jan 08, 2023
PeCo: Perceptual Codebook for BERT Pre-training of Vision Transformers

PeCo: Perceptual Codebook for BERT Pre-training of Vision Transformers

Microsoft 105 Jan 08, 2022
LewusBot - Twitch ChatBot built in python with twitchio library

LewusBot Twitch ChatBot built in python with twitchio library. Uses twitch/leagu

Lewus 25 Dec 04, 2022