Python implementation of R package breakDown

Overview

pyBreakDown

Python implementation of breakDown package (https://github.com/pbiecek/breakDown).

Docs: https://pybreakdown.readthedocs.io.

Requirements

Nothing fancy, just python 3.5.2+ and pip.

Installation

Install directly from github

    git clone https://github.com/bondyra/pyBreakDown
    cd ./pyBreakDown
    python3 setup.py install  # (or use pip install . instead)

Basic usage

Load dataset

from sklearn import datasets
x = datasets.load_boston()
data = x.data
feature_names = x.feature_names
y = x.target

Prepare model

import numpy as np
from sklearn import tree
model = tree.DecisionTreeRegressor()

Train model

train_data = data[1:300,:]
train_labels=y[1:300]
model = model.fit(train_data,y=train_labels)

Explain predictions on test data

#necessary imports
from pyBreakDown.explainer import Explainer
from pyBreakDown.explanation import Explanation
#make explainer object
exp = Explainer(clf=model, data=train_data, colnames=feature_names)
#make explanation object that contains all information
explanation = exp.explain(observation=data[302,:],direction="up")

Text form of explanations

#get information in text form
explanation.text()
Feature                  Contribution        Cumulative          
Intercept = 1            29.1                29.1                
RM = 6.495               -1.98               27.12               
TAX = 329.0              -0.2                26.92               
B = 383.61               -0.12               26.79               
CHAS = 0.0               -0.07               26.72               
NOX = 0.433              -0.02               26.7                
RAD = 7.0                0.0                 26.7                
INDUS = 6.09             0.01                26.71               
DIS = 5.4917             -0.04               26.66               
ZN = 34.0                0.01                26.67               
PTRATIO = 16.1           0.04                26.71               
AGE = 18.4               0.06                26.77               
CRIM = 0.09266           1.33                28.11               
LSTAT = 8.67             4.6                 32.71               
Final prediction                             32.71               
Baseline = 0
#customized text form
explanation.text(fwidth=40, contwidth=40, cumulwidth = 40, digits=4)
Feature                                 Contribution                            Cumulative                              
Intercept = 1                           29.1                                    29.1                                    
RM = 6.495                              -1.9826                                 27.1174                                 
TAX = 329.0                             -0.2                                    26.9174                                 
B = 383.61                              -0.1241                                 26.7933                                 
CHAS = 0.0                              -0.0686                                 26.7247                                 
NOX = 0.433                             -0.0241                                 26.7007                                 
RAD = 7.0                               0.0                                     26.7007                                 
INDUS = 6.09                            0.0074                                  26.708                                  
DIS = 5.4917                            -0.0438                                 26.6642                                 
ZN = 34.0                               0.0077                                  26.6719                                 
PTRATIO = 16.1                          0.0385                                  26.7104                                 
AGE = 18.4                              0.0619                                  26.7722                                 
CRIM = 0.09266                          1.3344                                  28.1067                                 
LSTAT = 8.67                            4.6037                                  32.7104                                 
Final prediction                                                                32.7104                                 
Baseline = 0

Visual form of explanations

explanation.visualize()

png

#customize height, width and dpi of plot
explanation.visualize(figsize=(8,5),dpi=100)

png

#for different baselines than zero
explanation = exp.explain(observation=data[302,:],direction="up",useIntercept=True)  # baseline==intercept
explanation.visualize(figsize=(8,5),dpi=100)

png

Owner
MI^2 DataLab
MI^2 DataLab
Portal is the fastest way to load and visualize your deep neural networks on images and videos 🔮

Portal is the fastest way to load and visualize your deep neural networks on images and videos 🔮

Datature 243 Jan 05, 2023
Visualize a molecule and its conformations in Jupyter notebooks/lab using py3dmol

Mol Viewer This is a simple package wrapping py3dmol for a single command visualization of a RDKit molecule and its conformations (embed as Conformer

Benoît BAILLIF 1 Feb 11, 2022
Visualizer for neural network, deep learning, and machine learning models

Netron is a viewer for neural network, deep learning and machine learning models. Netron supports ONNX (.onnx, .pb, .pbtxt), Keras (.h5, .keras), Tens

Lutz Roeder 20.9k Dec 28, 2022
Visual Computing Group (Ulm University) 99 Nov 30, 2022
tensorboard for pytorch (and chainer, mxnet, numpy, ...)

tensorboardX Write TensorBoard events with simple function call. The current release (v2.1) is tested on anaconda3, with PyTorch 1.5.1 / torchvision 0

Tzu-Wei Huang 7.5k Jan 07, 2023
Pytorch implementation of convolutional neural network visualization techniques

Convolutional Neural Network Visualizations This repository contains a number of convolutional neural network visualization techniques implemented in

Utku Ozbulak 7k Jan 03, 2023
Delve is a Python package for analyzing the inference dynamics of your PyTorch model.

Delve is a Python package for analyzing the inference dynamics of your PyTorch model.

Delve 73 Dec 12, 2022
Logging MXNet data for visualization in TensorBoard.

Logging MXNet Data for Visualization in TensorBoard Overview MXBoard provides a set of APIs for logging MXNet data for visualization in TensorBoard. T

Amazon Web Services - Labs 327 Dec 05, 2022
Contrastive Explanation (Foil Trees), developed at TNO/Utrecht University

Contrastive Explanation (Foil Trees) Contrastive and counterfactual explanations for machine learning (ML) Marcel Robeer (2018-2020), TNO/Utrecht Univ

M.J. Robeer 41 Aug 29, 2022
Visualization toolkit for neural networks in PyTorch! Demo -->

FlashTorch A Python visualization toolkit, built with PyTorch, for neural networks in PyTorch. Neural networks are often described as "black box". The

Misa Ogura 692 Dec 29, 2022
A library for debugging/inspecting machine learning classifiers and explaining their predictions

ELI5 ELI5 is a Python package which helps to debug machine learning classifiers and explain their predictions. It provides support for the following m

2.6k Dec 30, 2022
GNNLens2 is an interactive visualization tool for graph neural networks (GNN).

GNNLens2 is an interactive visualization tool for graph neural networks (GNN).

Distributed (Deep) Machine Learning Community 143 Jan 07, 2023
Visualizer for neural network, deep learning, and machine learning models

Netron is a viewer for neural network, deep learning and machine learning models. Netron supports ONNX, TensorFlow Lite, Keras, Caffe, Darknet, ncnn,

Lutz Roeder 20.9k Dec 28, 2022
A python library for decision tree visualization and model interpretation.

dtreeviz : Decision Tree Visualization Description A python library for decision tree visualization and model interpretation. Currently supports sciki

Terence Parr 2.4k Jan 02, 2023
JittorVis - Visual understanding of deep learning model.

JittorVis - Visual understanding of deep learning model.

182 Jan 06, 2023
PyTorch implementation of DeepDream algorithm

neural-dream This is a PyTorch implementation of DeepDream. The code is based on neural-style-pt. Here we DeepDream a photograph of the Golden Gate Br

121 Nov 05, 2022
⬛ Python Individual Conditional Expectation Plot Toolbox

⬛ PyCEbox Python Individual Conditional Expectation Plot Toolbox A Python implementation of individual conditional expecation plots inspired by R's IC

Austin Rochford 140 Dec 30, 2022
Interactive convnet features visualization for Keras

Quiver Interactive convnet features visualization for Keras The quiver workflow Video Demo Build your model in keras model = Model(...) Launch the vis

Keplr 1.7k Dec 21, 2022
ModelChimp is an experiment tracker for Deep Learning and Machine Learning experiments.

ModelChimp What is ModelChimp? ModelChimp is an experiment tracker for Deep Learning and Machine Learning experiments. ModelChimp provides the followi

ModelChimp 124 Dec 21, 2022
A ultra-lightweight 3D renderer of the Tensorflow/Keras neural network architectures

A ultra-lightweight 3D renderer of the Tensorflow/Keras neural network architectures

Souvik Pratiher 16 Nov 17, 2021