Deep Multi-Magnification Network for multi-class tissue segmentation of whole slide images

Related tags

Deep LearningDMMN
Overview

Deep Multi-Magnification Network

This repository provides training and inference codes for Deep Multi-Magnification Network published here. Deep Multi-Magnification Network automatically segments multiple tissue subtypes by a set of patches from multiple magnifications in histopathology whole slide images.

Prerequisites

  • Python 3.6.7
  • Pytorch 1.3.1
  • OpenSlide 1.1.1
  • Albumentations

Training

The main training code is training.py. The trained segmentation model will be saved under runs/ by default.

In addition to config, you may need to update the following variables before running training.py:

  • n_classes: the number of tissue subtype classes + 1
  • train_file and val_file: the list of training and validation patches
    • Slide patches must be stored as /path/slide_tiles/patch_1.jpg, /path/slide_tiles/patch_2.jpg, ... /path/slide_tiles/patch_N.jpg
    • The coresponding label patches must be stored as /path/label_tiles/patch_1.png, /path/label_tiles/patch_2.png, ... /path/label_tiles/patch_N.png
    • train_file and val_file must be formatted as
     /path/,patch_1
     /path/,patch_2
     ...
     /path/,patch_N
    
  • d: the number of pixels of each class in the training set for weighted cross entropy loss function

Note that pixels labeled as class 0 are unannotated and will not contribute to the training.

Inference

The main inference codes are slidereader_coords.py and inference.py. You first need to run slidereader_coords.py to generate patch coordinates to be segmented in input whole slide images. After generating patch coordinates, you may run inference.py to generate segmentation predictions of input whole slide images. The segmentation predictions will be saved under imgs/ by default.

You may need to update the following variables before running slidereader_coords.py:

  • slides_to_read: the list of whole slide images
  • coord_file: an output file listing all patch coordinates

In adition to model_path and out_path, you may need to update the following variables before running inference.py:

  • n_classes: the number of tissue subtype classes + 1
  • test file: the list of patch coordinates generated by slidereader_coords.py
  • data_path: the path where whole slide images are located

Please download the pretrained breast model here.

Note that segmentation predictions will be generated in 4-bit BMP format. The size limit for 4-bit BMP files is 232 pixels.

License

This project is under the CC-BY-NC 4.0 license. See LICENSE for details. (c) MSK

Acknowledgments

Reference

If you find our work useful, please cite our paper:

@article{ho2021,
  title={Deep Multi-Magnification Networks for multi-class breast cancer image segmentation},
  author={Ho, David Joon and Yarlagadda, Dig V.K. and D'Alfonso, Timothy M. and Hanna, Matthew G. and Grabenstetter, Anne and Ntiamoah, Peter and Brogi, Edi and Tan, Lee K. and Fuchs, Thomas J.},
  journal={Computerized Medical Imaging and Graphics},
  year={2021},
  volume={88},
  pages={101866}
}
Owner
Computational Pathology
Computational Pathology
MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images

MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images This repository contains the implementation of our paper MetaAvatar: Learni

sfwang 96 Dec 13, 2022
A Pytorch implement of paper "Anomaly detection in dynamic graphs via transformer" (TADDY).

TADDY: Anomaly detection in dynamic graphs via transformer This repo covers an reference implementation for the paper "Anomaly detection in dynamic gr

Yue Tan 21 Nov 24, 2022
Plenoxels: Radiance Fields without Neural Networks, Code release WIP

Plenoxels: Radiance Fields without Neural Networks Alex Yu*, Sara Fridovich-Keil*, Matthew Tancik, Qinhong Chen, Benjamin Recht, Angjoo Kanazawa UC Be

Alex Yu 2.3k Dec 30, 2022
Code repository for the paper: Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild (ICCV 2021)

Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild Akash Sengupta, Ignas Budvytis, Robert

Akash Sengupta 149 Dec 14, 2022
Code Repo for the ACL21 paper "Common Sense Beyond English: Evaluating and Improving Multilingual LMs for Commonsense Reasoning"

Common Sense Beyond English: Evaluating and Improving Multilingual LMs for Commonsense Reasoning This is the Github repository of our paper, "Common S

INK Lab @ USC 19 Nov 30, 2022
Lane assist for ETS2, built with the ultra-fast-lane-detection model.

Euro-Truck-Simulator-2-Lane-Assist Lane assist for ETS2, built with the ultra-fast-lane-detection model. This project was made possible by the amazing

36 Jan 05, 2023
Code for Pose-Controllable Talking Face Generation by Implicitly Modularized Audio-Visual Representation (CVPR 2021)

Pose-Controllable Talking Face Generation by Implicitly Modularized Audio-Visual Representation (CVPR 2021) Hang Zhou, Yasheng Sun, Wayne Wu, Chen Cha

Hang_Zhou 628 Dec 28, 2022
Mengzi Pretrained Models

中文 | English Mengzi 尽管预训练语言模型在 NLP 的各个领域里得到了广泛的应用,但是其高昂的时间和算力成本依然是一个亟需解决的问题。这要求我们在一定的算力约束下,研发出各项指标更优的模型。 我们的目标不是追求更大的模型规模,而是轻量级但更强大,同时对部署和工业落地更友好的模型。

Langboat 424 Jan 04, 2023
Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk

Annoy Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given quer

Spotify 10.6k Jan 04, 2023
Full Stack Deep Learning Labs

Full Stack Deep Learning Labs Welcome! Project developed during lab sessions of the Full Stack Deep Learning Bootcamp. We will build a handwriting rec

Full Stack Deep Learning 1.2k Dec 31, 2022
CenterFace(size of 7.3MB) is a practical anchor-free face detection and alignment method for edge devices.

CenterFace Introduce CenterFace(size of 7.3MB) is a practical anchor-free face detection and alignment method for edge devices. Recent Update 2019.09.

StarClouds 1.2k Dec 21, 2022
Code for the preprint "Well-classified Examples are Underestimated in Classification with Deep Neural Networks"

This is a repository for the paper of "Well-classified Examples are Underestimated in Classification with Deep Neural Networks" The implementation and

LancoPKU 25 Dec 11, 2022
Robust Consistent Video Depth Estimation

[CVPR 2021] Robust Consistent Video Depth Estimation This repository contains Python and C++ implementation of Robust Consistent Video Depth, as descr

Facebook Research 213 Dec 17, 2022
Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model

Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model About This repository contains the code to replicate the syn

Haruka Kiyohara 12 Dec 07, 2022
Sequence modeling benchmarks and temporal convolutional networks

Sequence Modeling Benchmarks and Temporal Convolutional Networks (TCN) This repository contains the experiments done in the work An Empirical Evaluati

CMU Locus Lab 3.5k Jan 01, 2023
Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN", accepted to ACM MM 2021 BNI Track.

RecycleD Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN

Yunan Zhu 23 Nov 05, 2022
Deep generative modeling for time-stamped heterogeneous data, enabling high-fidelity models for a large variety of spatio-temporal domains.

Neural Spatio-Temporal Point Processes [arxiv] Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel Abstract. We propose a new class of parameterizations

Facebook Research 75 Dec 19, 2022
Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

Text-AutoAugment (TAA) This repository contains the code for our paper Text AutoAugment: Learning Compositional Augmentation Policy for Text Classific

LancoPKU 105 Jan 03, 2023
Histology images query (unsupervised)

110-1-NTU-DBME5028-Histology-images-query Final Project: Histology images query (unsupervised) Kaggle: https://www.kaggle.com/c/histology-images-query

1 Jan 05, 2022
Official PyTorch implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation

U-GAT-IT — Official PyTorch Implementation : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Imag

Hyeonwoo Kang 2.4k Jan 04, 2023