Concept Modeling: Topic Modeling on Images and Text

Overview

PyPI - Python PyPI - PyPi docs PyPI - License

Concept

Concept is a technique that leverages CLIP and BERTopic-based techniques to perform Concept Modeling on images.

Since topics are part of conversations and text, they do not represent the context of images well. Therefore, these clusters of images are referred to as 'Concepts' instead of the traditional 'Topics'.

Thus, Concept Modeling takes inspiration from topic modeling techniques to cluster images, find common concepts and model them both visually using images and textually using topic representations.

Installation

Installation, with sentence-transformers, can be done using pypi:

pip install concept

Quick Start

First, we need to download and extract 25.000 images from Unsplash used in the sentence-transformers example:

import os
import zipfile
from tqdm import tqdm
from PIL import Image
from sentence_transformers import util


# 25k images from Unsplash
img_folder = 'photos/'
if not os.path.exists(img_folder) or len(os.listdir(img_folder)) == 0:
    os.makedirs(img_folder, exist_ok=True)
    
    photo_filename = 'unsplash-25k-photos.zip'
    if not os.path.exists(photo_filename):   #Download dataset if does not exist
        util.http_get('http://sbert.net/datasets/'+photo_filename, photo_filename)
        
    #Extract all images
    with zipfile.ZipFile(photo_filename, 'r') as zf:
        for member in tqdm(zf.infolist(), desc='Extracting'):
            zf.extract(member, img_folder)
images = [Image.open("photos/"+filepath) for filepath in tqdm(img_names)]

Next, we only need to pass images to Concept:

from concept import ConceptModel
concept_model = ConceptModel()
concepts = concept_model.fit_transform(images)

The resulting concepts can be visualized through concept_model.visualize_concepts():

However, to get the full experience, we need to label the concept clusters with topics. To do this, we need to create a vocabulary:

from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
docs = fetch_20newsgroups(subset='all',  remove=('headers', 'footers', 'quotes'))['data']
vectorizer = TfidfVectorizer(ngram_range=(1, 2)).fit(docs)
words = vectorizer.get_feature_names()
words = [words[index] for index in np.argpartition(vectorizer.idf_, -50_000)[-50_000:]]

Then, we can pass in the resulting words to Concept:

from concept import ConceptModel

concept_model = ConceptModel()
concepts = concept_model.fit_transform(images, docs=words)

Again, the resulting concepts can be visualized. This time however, we can also see the generated topics through concept_model.visualize_concepts():

NOTE: Use Concept(embedding_model="clip-ViT-B-32-multilingual-v1") to select a model that supports 50+ languages.

Comments
  • Question about the Function transform

    Question about the Function transform

    Thank you for your excellent job-:) I have a question when i read the code about function transform You say, given the images and image_embedding, and the return is Predictions:Concept predictions for each image But when i read the code of transform, the output is not the concept prediction for each image. can you explain it ?Thank you very much!

    opened by shaoniana1997 7
  • Pandas key error during model fitting

    Pandas key error during model fitting

    I tried the demo code and it worked for a small sample, tried to feed it more images and I got this error KeyError: '[-1] not found in axis'

    dependencies: concept=='0.2.1' pandas=1.4.0

    /home/<username>/anaconda3/envs/rd38/lib/python3.8/site-packages/torchvision/transforms/transforms.py:332: UserWarning: Argument 'interpolation' of type int is deprecated since 0.13 and will be removed in 0.15. Please use InterpolationMode enum.
      warnings.warn(
    100%|███████████████████████████████████████████████████████████████████████████████████████| 20/20 [00:21<00:00,  1.06s/it]
    ---------------------------------------------------------------------------
    KeyError                                  Traceback (most recent call last)
    Input In [30], in <cell line: 3>()
          1 from concept import ConceptModel
          2 concept_model = ConceptModel()
    ----> 3 concepts = concept_model.fit_transform(img_names[3500:6000])
    
    File ~/anaconda3/envs/rd38/lib/python3.8/site-packages/concept/_model.py:124, in ConceptModel.fit_transform(self, images, docs, image_names, image_embeddings)
        122 # Reduce dimensionality and cluster images into concepts
        123 reduced_embeddings = self._reduce_dimensionality(image_embeddings)
    --> 124 predictions = self._cluster_embeddings(reduced_embeddings)
        126 # Extract representative images through exemplars
        127 representative_images = self._extract_exemplars(image_names)
    
    File ~/anaconda3/envs/rd38/lib/python3.8/site-packages/concept/_model.py:261, in ConceptModel._cluster_embeddings(self, embeddings)
        257 self.cluster_labels = sorted(list(set(self.hdbscan_model.labels_)))
        258 predicted_clusters = list(self.hdbscan_model.labels_)
        260 self.frequency = (
    --> 261     pd.DataFrame({"Cluster": predicted_clusters, "Count": predicted_clusters})
        262       .groupby("Cluster")
        263       .count()
        264       .drop(-1)
        265       .sort_values("Count", ascending=False)
        266 )
        267 return predicted_clusters
    
    File ~/anaconda3/envs/rd38/lib/python3.8/site-packages/pandas/util/_decorators.py:311, in deprecate_nonkeyword_arguments.<locals>.decorate.<locals>.wrapper(*args, **kwargs)
        305 if len(args) > num_allow_args:
        306     warnings.warn(
        307         msg.format(arguments=arguments),
        308         FutureWarning,
        309         stacklevel=stacklevel,
        310     )
    --> 311 return func(*args, **kwargs)
    
    File ~/anaconda3/envs/rd38/lib/python3.8/site-packages/pandas/core/frame.py:4956, in DataFrame.drop(self, labels, axis, index, columns, level, inplace, errors)
       4808 @deprecate_nonkeyword_arguments(version=None, allowed_args=["self", "labels"])
       4809 def drop(
       4810     self,
       (...)
       4817     errors: str = "raise",
       4818 ):
       4819     """
       4820     Drop specified labels from rows or columns.
       4821 
       (...)
       4954             weight  1.0     0.8
       4955     """
    -> 4956     return super().drop(
       4957         labels=labels,
       4958         axis=axis,
       4959         index=index,
       4960         columns=columns,
       4961         level=level,
       4962         inplace=inplace,
       4963         errors=errors,
       4964     )
    
    File ~/anaconda3/envs/rd38/lib/python3.8/site-packages/pandas/core/generic.py:4279, in NDFrame.drop(self, labels, axis, index, columns, level, inplace, errors)
       4277 for axis, labels in axes.items():
       4278     if labels is not None:
    -> 4279         obj = obj._drop_axis(labels, axis, level=level, errors=errors)
       4281 if inplace:
       4282     self._update_inplace(obj)
    
    File ~/anaconda3/envs/rd38/lib/python3.8/site-packages/pandas/core/generic.py:4323, in NDFrame._drop_axis(self, labels, axis, level, errors, consolidate, only_slice)
       4321         new_axis = axis.drop(labels, level=level, errors=errors)
       4322     else:
    -> 4323         new_axis = axis.drop(labels, errors=errors)
       4324     indexer = axis.get_indexer(new_axis)
       4326 # Case for non-unique axis
       4327 else:
    
    File ~/anaconda3/envs/rd38/lib/python3.8/site-packages/pandas/core/indexes/base.py:6644, in Index.drop(self, labels, errors)
       6642 if mask.any():
       6643     if errors != "ignore":
    -> 6644         raise KeyError(f"{list(labels[mask])} not found in axis")
       6645     indexer = indexer[~mask]
       6646 return self.delete(indexer)
    
    KeyError: '[-1] not found in axis'
    
    opened by amrakm 2
  • Saving the model

    Saving the model

    Hi.

    Thank you very much for creating this. It is an absolutely brilliant idea. Once we have created the model, how do we save the model and use it for any new data that comes in?

    opened by vvkishere 2
  • TypeError: __init__() got an unexpected keyword argument 'cachedir'

    TypeError: __init__() got an unexpected keyword argument 'cachedir'

    I was reproducing the same Colab notebook in the ReadME without any change: https://colab.research.google.com/drive/1XHwQPT2itZXu1HayvGoj60-xAXxg9mqe?usp=sharing#scrollTo=VcgGxrLH-AU9

    While importing the library from concept import ConceptModel, this error appears:

    TypeError: init() got an unexpected keyword argument 'cachedir'

    Apparently it stems from hdbscan module as cachedir was removed from joblib.Memory. https://github.com/joblib/joblib/blame/3fb7fbde772e10415f879e0cb7e5d986fede8460/joblib/memory.py#L910

    opened by orkhan-amrullayev 1
  • TypeError: Cannot use scipy.linalg.eigh for sparse A with k >= N. Use scipy.linalg.eigh(A.toarray()) or reduce k.

    TypeError: Cannot use scipy.linalg.eigh for sparse A with k >= N. Use scipy.linalg.eigh(A.toarray()) or reduce k.

    Hi there,

    I am trying to run Concept on a very small dataset of images (10 images in jpg) but while I can run it on the sample you provided (Colab) I get the following error with my dataset. Any idea what might be the issue?

    image

    Aside from this specific issue, this is an amazing work!

    opened by cyberandy 1
  • v0.2

    v0.2

    Extract the textual representation not through cosine similarity of embeddings but by generating a set of words for each image and running c-TF-IDF over the clusters of words.

    opened by MaartenGr 0
  • Multilingual support

    Multilingual support

    Code for English:

    from concept import ConceptModel
    concept_model = ConceptModel()
    concepts = concept_model.fit_transform(images, docs)
    # Works correctly!
    

    Guide suggests "Use Concept(embedding_model="clip-ViT-B-32-multilingual-v1") to select a model that supports 50+ languages.":

    from concept import Concept
    # ImportError: cannot import name 'Concept' from 'concept' --> I guess you mean to import ConceptModel
    

    Importing ConceptModel:

    from concept import ConceptModel
    concept_model = ConceptModel(embedding_model="clip-ViT-B-32-multilingual-v1")
    concepts = concept_model.fit_transform(images, docs)
    # TypeError: 'JpegImageFile' object is not subscriptable
    
    opened by scr255 3
  • Exemplar dict is not serializable

    Exemplar dict is not serializable

    Hi, thanks for your awesome libraries.

    Just a short question: In this line:

    https://github.com/MaartenGr/Concept/blob/d270607d6ea4d789a42d54880ab4a0c977bb69ce/concept/_model.py#L304

    you're casting the numpy int64s to integers, presumably so they can be used as indexes? In any case, the cluster keys remain np.int64. This means the whole dict cannot be serialized (as json doesn't know how to handle numpy data types).

    My suggestion would be to int() the keys as well to make this a bit less perplexing. But I'm not sure if you rely on the indexes being np.int64 in some other place?

    opened by trifle 3
  • ValueError: operands could not be broadcast together with shapes (4,224,224) (3,)

    ValueError: operands could not be broadcast together with shapes (4,224,224) (3,)

    Running a Concept example on OS S Monterey 12.3.1 ...Transformers/Image_utils #143: return (image - mean) / std

    image is (4,224,224) mean is (3,) std is (3,) Screen Shot 2022-05-11 at 1 36 11 PM

    Python 3.8.13 
    % pip show tensorflow_macos
    WARNING: Ignoring invalid distribution -umpy (/Users/davidlaxer/tensorflow-metal/lib/python3.8/site-packages)
    Name: tensorflow-macos
    Version: 2.8.0
    Summary: TensorFlow is an open source machine learning framework for everyone.
    Home-page: https://www.tensorflow.org/
    Author: Google Inc.
    Author-email: [email protected]
    License: Apache 2.0
    Location: /Users/davidlaxer/tensorflow-metal/lib/python3.8/site-packages
    Requires: absl-py, astunparse, flatbuffers, gast, google-pasta, grpcio, h5py, keras, keras-preprocessing, libclang, numpy, opt-einsum, protobuf, setuptools, six, tensorboard, termcolor, tf-estimator-nightly, typing-extensions, wrapt
    Required-by: 
    
    pip show sentence_transformers
    WARNING: Ignoring invalid distribution -umpy (/Users/davidlaxer/tensorflow-metal/lib/python3.8/site-packages)
    Name: sentence-transformers
    Version: 2.1.0
    Summary: Sentence Embeddings using BERT / RoBERTa / XLM-R
    Home-page: https://github.com/UKPLab/sentence-transformers
    Author: Nils Reimers
    Author-email: [email protected]
    License: Apache License 2.0
    Location: /Users/davidlaxer/tensorflow-metal/lib/python3.8/site-packages
    Requires: huggingface-hub, nltk, numpy, scikit-learn, scipy, sentencepiece, tokenizers, torch, torchvision, tqdm, transformers
    Required-by: bertopic, concept
    
    % pip show transformers
    WARNING: Ignoring invalid distribution -umpy (/Users/davidlaxer/tensorflow-metal/lib/python3.8/site-packages)
    Name: transformers
    Version: 4.11.3
    Summary: State-of-the-art Natural Language Processing for TensorFlow 2.0 and PyTorch
    Home-page: https://github.com/huggingface/transformers
    Author: Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Sam Shleifer, Patrick von Platen, Sylvain Gugger, Suraj Patil, Stas Bekman, Google AI Language Team Authors, Open AI team Authors, Facebook AI Authors, Carnegie Mellon University Authors
    Author-email: [email protected]
    License: Apache
    Location: /Users/davidlaxer/tensorflow-metal/lib/python3.8/site-packages
    Requires: filelock, huggingface-hub, numpy, packaging, pyyaml, regex, requests, sacremoses, tokenizers, tqdm
    Required-by: sentence-transformers
    
    

    Here's the code:

    import os
    import glob
    import zipfile
    from tqdm import tqdm
    from sentence_transformers import util
    
    # 25k images from Unsplash
    img_folder = 'photos/'
    if not os.path.exists(img_folder) or len(os.listdir(img_folder)) == 0:
        os.makedirs(img_folder, exist_ok=True)
    
        photo_filename = 'unsplash-25k-photos.zip'
        if not os.path.exists(photo_filename):  # Download dataset if does not exist
            util.http_get('http://sbert.net/datasets/' + photo_filename, photo_filename)
    
        # Extract all images
        with zipfile.ZipFile(photo_filename, 'r') as zf:
            for member in tqdm(zf.infolist(), desc='Extracting'):
                zf.extract(member, img_folder)
    img_names = list(glob.glob('photos/*.jpg'))
    
    from concept import ConceptModel
    concept_model = ConceptModel()
    concepts = concept_model.fit_transform(img_names)
    
    B/s]
      0%|                                                   | 0/196 [00:00<?, ?it/s]/Users/davidlaxer/tensorflow-metal/lib/python3.8/site-packages/transformers/feature_extraction_utils.py:158: UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor. (Triggered internally at  ../torch/csrc/utils/tensor_new.cpp:201.)
      tensor = as_tensor(value)
      5%|█▉                                         | 9/196 [02:21<48:54, 15.69s/it]
    ---------------------------------------------------------------------------
    ValueError                                Traceback (most recent call last)
    Input In [2], in <cell line: 3>()
          1 from concept import ConceptModel
          2 concept_model = ConceptModel()
    ----> 3 concepts = concept_model.fit_transform(img_names)
    
    File ~/Concept/concept/_model.py:120, in ConceptModel.fit_transform(self, images, docs, image_names, image_embeddings)
        118 # Calculate image embeddings if not already generated
        119 if image_embeddings is None:
    --> 120     image_embeddings = self._embed_images(images)
        122 # Reduce dimensionality and cluster images into concepts
        123 reduced_embeddings = self._reduce_dimensionality(image_embeddings)
    
    File ~/Concept/concept/_model.py:224, in ConceptModel._embed_images(self, images)
        221 end_index = (i * batch_size) + batch_size
        223 images_to_embed = [Image.open(filepath) for filepath in images[start_index:end_index]]
    --> 224 img_emb = self.embedding_model.encode(images_to_embed, show_progress_bar=False)
        225 embeddings.extend(img_emb.tolist())
        227 # Close images
    
    File ~/tensorflow-metal/lib/python3.8/site-packages/sentence_transformers/SentenceTransformer.py:153, in SentenceTransformer.encode(self, sentences, batch_size, show_progress_bar, output_value, convert_to_numpy, convert_to_tensor, device, normalize_embeddings)
        151 for start_index in trange(0, len(sentences), batch_size, desc="Batches", disable=not show_progress_bar):
        152     sentences_batch = sentences_sorted[start_index:start_index+batch_size]
    --> 153     features = self.tokenize(sentences_batch)
        154     features = batch_to_device(features, device)
        156     with torch.no_grad():
    
    File ~/tensorflow-metal/lib/python3.8/site-packages/sentence_transformers/SentenceTransformer.py:311, in SentenceTransformer.tokenize(self, texts)
        307 def tokenize(self, texts: Union[List[str], List[Dict], List[Tuple[str, str]]]):
        308     """
        309     Tokenizes the texts
        310     """
    --> 311     return self._first_module().tokenize(texts)
    
    File ~/tensorflow-metal/lib/python3.8/site-packages/sentence_transformers/models/CLIPModel.py:71, in CLIPModel.tokenize(self, texts)
         68 if len(images) == 0:
         69     images = None
    ---> 71 inputs = self.processor(text=texts_values, images=images, return_tensors="pt", padding=True)
         72 inputs['image_text_info'] = image_text_info
         73 return inputs
    
    File ~/tensorflow-metal/lib/python3.8/site-packages/transformers/models/clip/processing_clip.py:148, in CLIPProcessor.__call__(self, text, images, return_tensors, **kwargs)
        145     encoding = self.tokenizer(text, return_tensors=return_tensors, **kwargs)
        147 if images is not None:
    --> 148     image_features = self.feature_extractor(images, return_tensors=return_tensors, **kwargs)
        150 if text is not None and images is not None:
        151     encoding["pixel_values"] = image_features.pixel_values
    
    File ~/tensorflow-metal/lib/python3.8/site-packages/transformers/models/clip/feature_extraction_clip.py:150, in CLIPFeatureExtractor.__call__(self, images, return_tensors, **kwargs)
        148     images = [self.center_crop(image, self.crop_size) for image in images]
        149 if self.do_normalize:
    --> 150     images = [self.normalize(image=image, mean=self.image_mean, std=self.image_std) for image in images]
        152 # return as BatchFeature
        153 data = {"pixel_values": images}
    
    File ~/tensorflow-metal/lib/python3.8/site-packages/transformers/models/clip/feature_extraction_clip.py:150, in <listcomp>(.0)
        148     images = [self.center_crop(image, self.crop_size) for image in images]
        149 if self.do_normalize:
    --> 150     images = [self.normalize(image=image, mean=self.image_mean, std=self.image_std) for image in images]
        152 # return as BatchFeature
        153 data = {"pixel_values": images}
    
    File ~/tensorflow-metal/lib/python3.8/site-packages/transformers/image_utils.py:143, in ImageFeatureExtractionMixin.normalize(self, image, mean, std)
        141     return (image - mean[:, None, None]) / std[:, None, None]
        142 else:
    --> 143     return (image - mean) / std
    
    ValueError: operands could not be broadcast together with shapes (4,224,224) (3,) 
    
    

    The exception is in the normalize() function ... I believe in the 9th Pil image: Screen Shot 2022-05-11 at 11 14 42 AM

    opened by dbl001 9
  • OSError: [Errno 24] Too many open files: 'photos/icnZ2R8PcDs.jpg'

    OSError: [Errno 24] Too many open files: 'photos/icnZ2R8PcDs.jpg'

    What do recommend setting max_open_files to?

    images = [Image.open("photos/"+filepath) for filepath in tqdm(img_names[:5000])]
    image_names = img_names[:5000]
    image_embeddings = img_embeddings[:5000]
    
    54%|███████████████████▍                | 2693/5000 [00:00<00:00, 13545.87it/s]
    ---------------------------------------------------------------------------
    OSError                                   Traceback (most recent call last)
    Input In [4], in <cell line: 1>()
    ----> 1 images = [Image.open("photos/"+filepath) for filepath in tqdm(img_names[:5000])]
          2 image_names = img_names[:5000]
          3 image_embeddings = img_embeddings[:5000]
    
    Input In [4], in <listcomp>(.0)
    ----> 1 images = [Image.open("photos/"+filepath) for filepath in tqdm(img_names[:5000])]
          2 image_names = img_names[:5000]
          3 image_embeddings = img_embeddings[:5000]
    
    File ~/tensorflow-metal/lib/python3.8/site-packages/PIL/Image.py:2968, in open(fp, mode, formats)
       2965     filename = fp
       2967 if filename:
    -> 2968     fp = builtins.open(filename, "rb")
       2969     exclusive_fp = True
       2971 try:
    
    OSError: [Errno 24] Too many open files: 'photos/icnZ2R8PcDs.jpg'
    
    % ulimit -a
    -t: cpu time (seconds)              unlimited
    -f: file size (blocks)              unlimited
    -d: data seg size (kbytes)          unlimited
    -s: stack size (kbytes)             8192
    -c: core file size (blocks)         0
    -v: address space (kbytes)          unlimited
    -l: locked-in-memory size (kbytes)  unlimited
    -u: processes                       11136
    -n: file descriptors                8192
    (base) [email protected]_64-apple-darwin13 notebooks % 
    
    
    opened by dbl001 3
  • Questions

    Questions

    Hello,

    Thank you for sharing you great work. I'd like to have a better understanding of the "fit_transform" function.

    How do you intend to use the parameter "image_names" ? For instance, i'd like to classify facebook posts. Does it means that I can pass posts messages with images embeddings to improve topics results ? Can you share any example of code using this parameter ?

    Is it possible to return top keywords describing each topic ? As far as I understand your code 'fit_transform' returns only the list of topic predictions.

    Thank you very much

    opened by erwanlenagard 4
Releases(v0.2.1)
  • v0.2.1(Nov 5, 2021)

  • v0.2.0(Nov 2, 2021)

    Added c-TF-IDF as an algorithm to extract textual representations from images.

    from concept import ConceptModel
    
    concept_model = ConceptModel(ctfidf=True)
    concepts = concept_model.fit_transform(img_names, docs=docs)
    

    From the textual and visual embeddings, we use cosine similarity to find the best matching words for each image. Then, after clustering the images, we combine all words in a cluster into a single documents. Finally, c-TF-IDF is used to find the best words for each concept cluster.

    The benefit of this method is that it takes the entire cluster structure into account when creating the representations. This is not the case when we only consider words close to the concept embedding.

    Source code(tar.gz)
    Source code(zip)
  • v0.1.1(Nov 1, 2021)

  • v0.1.0(Oct 27, 2021)

    • Update Readme with a small example
    • Create documentation page: https://maartengr.github.io/Concept/
    • Fix fit not working properly
    • Better visualization of resulting concepts
    Source code(tar.gz)
    Source code(zip)
Owner
Maarten Grootendorst
Data Scientist | Psychologist
Maarten Grootendorst
Treemap visualisation of Maya scene files

Ever wondered which nodes are responsible for that 600 mb+ Maya scene file? Features Fast, resizable UI Parsing at 50 mb/sec Dependency-free, single-f

Marcus Ottosson 76 Nov 12, 2022
Deduplication is the task to combine different representations of the same real world entity.

Deduplication is the task to combine different representations of the same real world entity. This package implements deduplication using active learning. Active learning allows for rapid training wi

63 Nov 17, 2022
fastNLP: A Modularized and Extensible NLP Framework. Currently still in incubation.

fastNLP fastNLP是一款轻量级的自然语言处理(NLP)工具包,目标是快速实现NLP任务以及构建复杂模型。 fastNLP具有如下的特性: 统一的Tabular式数据容器,简化数据预处理过程; 内置多种数据集的Loader和Pipe,省去预处理代码; 各种方便的NLP工具,例如Embedd

fastNLP 2.8k Jan 01, 2023
Samantha, A covid-19 information bot which will provide basic information about this pandemic in form of conversation.

Covid-19-BOT Samantha, A covid-19 information bot which will provide basic information about this pandemic in form of conversation. This bot uses torc

Neeraj Majhi 2 Nov 05, 2021
LegalNLP - Natural Language Processing Methods for the Brazilian Legal Language

LegalNLP - Natural Language Processing Methods for the Brazilian Legal Language ⚖️ The library of Natural Language Processing for Brazilian legal lang

Felipe Maia Polo 125 Dec 20, 2022
Natural Language Processing with transformers

we want to create a repo to illustrate usage of transformers in chinese

Datawhale 763 Dec 27, 2022
Code Implementation of "Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction".

Span-ASTE: Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction ***** New March 31th, 2022: Scikit-Style API for Easy Usage *****

Chia Yew Ken 111 Dec 23, 2022
This code extends the neural style transfer image processing technique to video by generating smooth transitions between several reference style images

Neural Style Transfer Transition Video Processing By Brycen Westgarth and Tristan Jogminas Description This code extends the neural style transfer ima

Brycen Westgarth 110 Jan 07, 2023
A simple chatbot based on chatterbot that you can use for anything has basic features

Chatbotium A simple chatbot based on chatterbot that you can use for anything has basic features. I have some errors Read the paragraph below: Known b

Herman 1 Feb 16, 2022
KR-FinBert And KR-FinBert-SC

KR-FinBert & KR-FinBert-SC Much progress has been made in the NLP (Natural Language Processing) field, with numerous studies showing that domain adapt

5 Jul 29, 2022
结巴中文分词

jieba “结巴”中文分词:做最好的 Python 中文分词组件 "Jieba" (Chinese for "to stutter") Chinese text segmentation: built to be the best Python Chinese word segmentation

Sun Junyi 29.8k Jan 02, 2023
A python script to prefab your scripts/text files, and re create them with ease and not have to open your browser to copy code or write code yourself

Scriptfab - What is it? A python script to prefab your scripts/text files, and re create them with ease and not have to open your browser to copy code

DevNugget 3 Jul 28, 2021
Auto-researching tool generating word documents.

About ResearchTE automates researching by generating document with answers to given questions. Supports getting results from: Google DuckDuckGo (with

1 Feb 14, 2022
🤗 Transformers: State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained models

Hugging Face 77.1k Dec 31, 2022
In this project, we compared Spanish BERT and Multilingual BERT in the Sentiment Analysis task.

Applying BERT Fine Tuning to Sentiment Classification on Amazon Reviews Abstract Sentiment analysis has made great progress in recent years, due to th

Alexander Leonardo Lique Lamas 5 Jan 03, 2022
Tool which allow you to detect and translate text.

Text detection and recognition This repository contains tool which allow to detect region with text and translate it one by one. Description Two pretr

Damian Panek 176 Nov 28, 2022
End-2-end speech synthesis with recurrent neural networks

Introduction New: Interactive demo using Google Colaboratory can be found here TTS-Cube is an end-2-end speech synthesis system that provides a full p

Tiberiu Boros 214 Dec 07, 2022
Coreference resolution for English, German and Polish, optimised for limited training data and easily extensible for further languages

Coreferee Author: Richard Paul Hudson, msg systems ag 1. Introduction 1.1 The basic idea 1.2 Getting started 1.2.1 English 1.2.2 German 1.2.3 Polish 1

msg systems ag 169 Dec 21, 2022
ReCoin - Restoring our environment and businesses in parallel

Shashank Ojha, Sabrina Button, Abdellah Ghassel, Joshua Gonzales "Reduce Reuse R

sabrina button 1 Mar 14, 2022