ProtFeat is protein feature extraction tool that utilizes POSSUM and iFeature.

Overview

Linux version made-with-python Python GitHub license Open Source Love svg1

Description:

ProtFeat is designed to extract the protein features by employing POSSUM and iFeature python-based tools. ProtFeat includes a total of 39 distinct protein feature extraction methods (protein descriptors) using 21 PSSM-based protein descriptors from POSSUM and 18 protein descriptors from iFeature.

POSSUM (Position-Specific Scoring matrix-based feature generator for machine learning), a versatile toolkit with an online web server that can generate 21 types of PSSM-based feature descriptors, thereby addressing a crucial need for bioinformaticians and computational biologists.

iFeature, a versatile Python-based toolkit for generating various numerical feature representation schemes for both protein and peptide sequences. iFeature is capable of calculating and extracting a comprehensive spectrum of 18 major sequence encoding schemes that encompass 53 different types of feature descriptors.

Installation

ProtFeat is a python package for feature extracting from protein sequences written in Python 3.9. ProtFeat was developed and tested in Ubuntu 20.04 LTS. Please make sure that you have Anaconda installed on your computer and run the below commands to install requirements. Dependencies are available in requirements.txt file.

conda create -n protFeat_env python=3.9
conda activate protFeat_env

How to run ProtFeat to extract the protein features

Run the following commands in the given order:

To use ProtFeat as a python package:

pip install protFeat

Then, you may use protFeat as the following in python:

import protFeat
from protFeat.feature_extracter import extract_protein_feature, usage
usage()
extract_protein_feature(protein_feature, place_protein_id, input_folder, fasta_file_name)

For example,

extract_protein_feature("AAC", 1, "input_folder", "sample")

To use ProtFeat from terminal:

Clone the Git Repository.

git clone https://github.com/gozsari/ProtFeat

In terminal or command line navigate into protFeat folder.

cd ProtFeat

Install the requirements by the running the following command.

pip install -r requirements.txt

Altenatively you may run ProtFeat from the terminal as the following:

cd src
python protFeat_command_line.py --pf protein_feature --ppid place_protein_id --inpf input_folder --fname fasta_file_name

For example,

python protFeat_command_line.py --pf AAC --ppid 1 --inpf input_folder --fname sample

Explanation of Parameters

protein_feature: {string}, (default = 'aac_pssm'): one of the protein descriptors in POSSUM and iFeature.

POSSUM descriptors:

aac_pssm, d_fpssm, smoothed_pssm, ab_pssm, pssm_composition, rpm_pssm,
s_fpssm, dpc_pssm, k_separated_bigrams_pssm, eedp, tpc, edp, rpssm,
pse_pssm, dp_pssm, pssm_ac, pssm_cc, aadp_pssm, aatp, medp , or all_POSSUM

Note: all_POSSUM extracts the features of all (21) POSSUM protein descriptors.

iFeature descriptors:

AAC, PAAC, APAAC, DPC, GAAC, CKSAAP, CKSAAGP, GDPC, Moran, Geary,
NMBroto, CTDC, CTDD, CTDT, CTriad, KSCTriad, SOCNumber, QSOrder, or all_iFeature

Note: all_iFeature extracts the features of all (18) iFeature protein descriptors.

place_protein_id: {int}, (default = 1): It indicates the place of protein id in fasta header. e.g. fasta header: >sp|O27002|....|....|...., seperate the header wrt. '|' then >sp is in the zeroth position, protein id in the first(1) position.

input_folder: {string}, (default = 'input_folder'}: it is the path to the folder that contains the fasta file.

fasta_file_name: {string}, (default ='sample'): it is the name of the fasta file exclude the '.fasta' extension.

Input file

It must be in fasta format.

Output file

The extracted feature files will be located under feature_extraction_output folder with the name: fasta_file_name_protein_feature.txt (e.g. sample_AAC.txt).

The content of the output files:

  • The output file is tab-seperated.
  • Each row corresponds to the extracted features of the protein sequence.
  • The first column of each row is UniProtKB id of the proteins, the rest is extracted features of the protein sequence.

Tables of the available protein descriptors

Table 1: Protein descriptors obtained from the POSSUM tool.

Descriptor group Protein descriptor Number of dimensions
Row Transformations AAC-PSSM
D-FPSSM
smoothed-PSMM
AB-PSSM
PSSM-composition
RPM-PSSM
S-FPSSM
20
20
1000
400
400
400
400
Column Transformation DPC-PSSM
k-seperated-bigrams-PSSM                    
tri-gram-PSSM
EEDP
TPC
400
400
8000
4000
400
Mixture of row and column transformation EDP
RPSSM
Pre-PSSM
DP-PSSM
PSSM-AC
PSSM-CC
20
110
40
240
200
3800
Combination of above descriptors AADP-PSSSM
AATP
MEDP
420
420
420

Table 2: Protein descriptors obtained from the iFeature tool.
Descriptor group Protein descriptor Number of dimensions
Amino acid composition Amino acid composition (AAC)
Composition of k-spaced amino acid pairs (CKSAAP)
Dipeptide composition (DPC)
20
2400
400
Grouped amino acid composition Grouped amino acid composition (GAAC)
Composition of k-spaced amino acid group pairs (CKSAAGP)
Grouped dipeptide composition (GDPC)
5
150
25
Autocorrelation Moran (Moran)
Geary (Geary)
Normalized Moreau-Broto (NMBroto)
240
240
240
C/T/D Composition (CTDC)
Transition (CTDT)
Distribution (CTDD)
39
39
195
Conjoint triad Conjoint triad (CTriad)
Conjoint k-spaced triad (KSCTriad)
343
343*(k+1)
Quasi-sequence-order Sequence-order-coupling number (SOCNumber)
Quasi-sequence-order descriptors (QSOrder)
60
100
Pseudo-amino acid composition Pseudo-amino acid composition (PAAC)
Amphiphilic PAAC (APAAC)
50
80

License

MIT License

ProtFeat Copyright (C) 2020 CanSyL

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

You might also like...
An Open-Source Package for Neural Relation Extraction (NRE)

OpenNRE We have a DEMO website (http://opennre.thunlp.ai/). Try it out! OpenNRE is an open-source and extensible toolkit that provides a unified frame

SpikeX - SpaCy Pipes for Knowledge Extraction

SpikeX is a collection of pipes ready to be plugged in a spaCy pipeline. It aims to help in building knowledge extraction tools with almost-zero effort.

Datasets of Automatic Keyphrase Extraction

This repository contains 20 annotated datasets of Automatic Keyphrase Extraction made available by the research community. Following are the datasets and the original papers that proposed them. If you know more datasets, and want to contribute, please, notify me.

open-information-extraction-system, build open-knowledge-graph(SPO, subject-predicate-object) by pyltp(version==3.4.0)

中文开放信息抽取系统, open-information-extraction-system, build open-knowledge-graph(SPO, subject-predicate-object) by pyltp(version==3.4.0)

Code for "Generating Disentangled Arguments with Prompts: a Simple Event Extraction Framework that Works"

GDAP The code of paper "Code for "Generating Disentangled Arguments with Prompts: a Simple Event Extraction Framework that Works"" Event Datasets Prep

Utilizing RBERT model for KLUE Relation Extraction task

RBERT for Relation Extraction task for KLUE Project Description Relation Extraction task is one of the task of Korean Language Understanding Evaluatio

Spert NLP Relation Extraction API deployed with torchserve for inference

SpERT torchserve Spert_torchserve is the Relation Extraction model (SpERT)Span-based Entity and Relation Transformer API deployed with pytorch/serve.

Code to reproduce the results of the paper 'Towards Realistic Few-Shot Relation Extraction' (EMNLP 2021)

Realistic Few-Shot Relation Extraction This repository contains code to reproduce the results in the paper "Towards Realistic Few-Shot Relation Extrac

Contact Extraction with Question Answering.

contactsQA Extraction of contact entities from address blocks and imprints with Extractive Question Answering. Goal Input: Dr. Max Mustermann Hauptstr

Releases(protein-feature-extraction)
  • protein-feature-extraction(Apr 12, 2022)

    ProtFeat is designed to extract the protein features by employing POSSUM and iFeature python-based tools. ProtFeat includes 39 distinct protein feature extraction methods using 21 PSSM-based protein descriptors from POSSUM and 18 protein descriptors from iFeature.

    Source code(tar.gz)
    Source code(zip)
Owner
GOKHAN OZSARI
Research and Teaching Assistant, at CEng, METU
GOKHAN OZSARI
Deduplication is the task to combine different representations of the same real world entity.

Deduplication is the task to combine different representations of the same real world entity. This package implements deduplication using active learning. Active learning allows for rapid training wi

63 Nov 17, 2022
PyTorch source code of NAACL 2019 paper "An Embarrassingly Simple Approach for Transfer Learning from Pretrained Language Models"

This repository contains source code for NAACL 2019 paper "An Embarrassingly Simple Approach for Transfer Learning from Pretrained Language Models" (P

Alexandra Chronopoulou 89 Aug 12, 2022
PyTorch implementation of convolutional neural networks-based text-to-speech synthesis models

Deepvoice3_pytorch PyTorch implementation of convolutional networks-based text-to-speech synthesis models: arXiv:1710.07654: Deep Voice 3: Scaling Tex

Ryuichi Yamamoto 1.8k Dec 30, 2022
An easy-to-use Python module that helps you to extract the BERT embeddings for a large text dataset (Bengali/English) efficiently.

An easy-to-use Python module that helps you to extract the BERT embeddings for a large text dataset (Bengali/English) efficiently.

Khalid Saifullah 37 Sep 05, 2022
Open-Source Toolkit for End-to-End Speech Recognition leveraging PyTorch-Lightning and Hydra.

🤗 Contributing to OpenSpeech 🤗 OpenSpeech provides reference implementations of various ASR modeling papers and three languages recipe to perform ta

Openspeech TEAM 513 Jan 03, 2023
Beyond the Imitation Game collaborative benchmark for enormous language models

BIG-bench 🪑 The Beyond the Imitation Game Benchmark (BIG-bench) will be a collaborative benchmark intended to probe large language models, and extrap

Google 1.3k Jan 01, 2023
QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries

Moment-DETR QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries Jie Lei, Tamara L. Berg, Mohit Bansal For dataset de

Jie Lei 雷杰 133 Dec 22, 2022
iSTFTNet : Fast and Lightweight Mel-spectrogram Vocoder Incorporating Inverse Short-time Fourier Transform

iSTFTNet : Fast and Lightweight Mel-spectrogram Vocoder Incorporating Inverse Short-time Fourier Transform This repo try to implement iSTFTNet : Fast

Rishikesh (ऋषिकेश) 126 Jan 02, 2023
Outreachy TFX custom component project

Schema Curation Custom Component Outreachy TFX custom component project This repo contains the code for Schema Curation Custom Component made as a par

Robert Crowe 5 Jul 16, 2021
Pytorch implementation of winner from VQA Chllange Workshop in CVPR'17

2017 VQA Challenge Winner (CVPR'17 Workshop) pytorch implementation of Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challeng

Mark Dong 166 Dec 11, 2022
Learning General Purpose Distributed Sentence Representations via Large Scale Multi-task Learning

GenSen Learning General Purpose Distributed Sentence Representations via Large Scale Multi-task Learning Sandeep Subramanian, Adam Trischler, Yoshua B

Maluuba Inc. 309 Oct 19, 2022
Open Source Neural Machine Translation in PyTorch

OpenNMT-py: Open-Source Neural Machine Translation OpenNMT-py is the PyTorch version of the OpenNMT project, an open-source (MIT) neural machine trans

OpenNMT 5.8k Jan 04, 2023
a CTF web challenge about making screenshots

screenshotter (web) A CTF web challenge about making screenshots. It is inspired by a bug found in real life. The challenge was created by @LiveOverfl

219 Jan 02, 2023
NVDA, the free and open source Screen Reader for Microsoft Windows

NVDA NVDA (NonVisual Desktop Access) is a free, open source screen reader for Microsoft Windows. It is developed by NV Access in collaboration with a

NV Access 1.6k Jan 07, 2023
Knowledge Graph,Question Answering System,基于知识图谱和向量检索的医疗诊断问答系统

Knowledge Graph,Question Answering System,基于知识图谱和向量检索的医疗诊断问答系统

wangle 823 Dec 28, 2022
The official implementation of VAENAR-TTS, a VAE based non-autoregressive TTS model.

VAENAR-TTS This repo contains code accompanying the paper "VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis". Sa

THUHCSI 138 Oct 28, 2022
Unsupervised Language Modeling at scale for robust sentiment classification

** DEPRECATED ** This repo has been deprecated. Please visit Megatron-LM for our up to date Large-scale unsupervised pretraining and finetuning code.

NVIDIA Corporation 1k Nov 17, 2022
Official PyTorch implementation of Time-aware Large Kernel (TaLK) Convolutions (ICML 2020)

Time-aware Large Kernel (TaLK) Convolutions (Lioutas et al., 2020) This repository contains the source code, pre-trained models, as well as instructio

Vasileios Lioutas 28 Dec 07, 2022