πŸ€– Basic Financial Chatbot with handoff ability built with Rasa

Overview

Financial Services Example Bot

This is an example chatbot demonstrating how to build AI assistants for financial services and banking with Rasa. It includes pre-built intents, actions, and stories for handling conversation flows like checking spending history and transferring money to another account.

Install dependencies

Run:

pip install -r requirements.txt

To install development dependencies:

pip install -r requirements-dev.txt
pre-commit install
python -m spacy download en_core_web_md en
python -m spacy link en_core_web_md en

With pre-commit installed, the black and doctoc hooks will run on every git commit. If any changes are made by the hooks, you will need to re-add changed files and re-commit your changes.

Run the bot

Use rasa train to train a model.

Then, to run, first set up your action server in one terminal window, listening on port 5056:

rasa run actions --port 5056

Note that port 5056 is used for the action server, to avoid a conflict when you also run the helpdesk bot as described below in the handoff section.

In another window, run the duckling server (for entity extraction):

docker run -p 8000:8000 rasa/duckling

Then to talk to the bot, run:

rasa shell --debug

You can also try out your bot locally using Rasa X by running

rasa x

Overview of the files

data/nlu/nlu.yml - contains NLU training data

data/nlu/rules.yml - contains rules training data

data/stories/stories*.yml - contains stories training data

actions.py - contains custom action/api code

domain.yml - the domain file, including bot response templates

config.yml - training configurations for the NLU pipeline and policy ensemble

Things you can ask the bot

The bot currently has five skills. You can ask it to:

  1. Transfer money to another person
  2. Check your earning or spending history (with a specific vendor or overall)
  3. Answer a question about transfer charges
  4. Pay a credit card bill
  5. Tell you your account balance

It also has a limited ability to switch skills mid-transaction and then return to the transaction at hand.

It recognises the following payment amounts (besides actual currency amounts):

  • minimum balance
  • current balance

It recognises the following vendors (for spending history):

  • Starbucks
  • Amazon
  • Target

You can change any of these by modifying actions.py and the corresponding NLU data.

Handoff

This bot includes a simple skill for handing off the conversation to another bot or a human. This demo relies on this fork of chatroom to work, however you could implement similar behaviour in another channel and then use that instead. See the chatroom README for more details on channel-side configuration.

Using the default set up, the handoff skill enables this kind of conversation with two bots:

Action Server Image

You will need to have docker installed in order to build the action server image. If you haven't made any changes to the action code, you can also use the public image on Dockerhub instead of building it yourself.

See the Dockerfile for what is included in the action server image,

To build the image:

docker build . -t <name of your custom image>:<tag of your custom image>

To test the container locally, you can then run the action server container with:

docker run -p 5055:5055 <name of your custom image>:<tag of your custom image>

Once you have confirmed that the container works as it should, you can push the container image to a registry with docker push

It is recommended to use an automated CI/CD process to keep your action server up to date in a production environment.

Owner
Mohammad Javad Hossieni
πŸ“± Im Fullstack Web & Mobile Developer also a Data Scientist Intrested in Blockchain ✨
Mohammad Javad Hossieni
Korea Spell Checker

ν•œκ΅­μ–΄ λ¬Έμ„œ koSpellPy Korean Spell checker How to use Install pip install kospellpy Use from kospellpy import spell_init spell_checker = spell_init() # d

kangsukmin 2 Oct 20, 2021
CoNLL-English NER Task (NER in English)

CoNLL-English NER Task en | ch Motivation Course Project review the pytorch framework and sequence-labeling task practice using the transformers of Hu

Kevin 2 Jan 14, 2022
TensorFlow code and pre-trained models for BERT

BERT ***** New March 11th, 2020: Smaller BERT Models ***** This is a release of 24 smaller BERT models (English only, uncased, trained with WordPiece

Google Research 32.9k Jan 08, 2023
The implementation of Parameter Differentiation based Multilingual Neural Machine Translation

The implementation of Parameter Differentiation based Multilingual Neural Machine Translation .

Qian Wang 21 Dec 17, 2022
Universal Adversarial Triggers for Attacking and Analyzing NLP (EMNLP 2019)

Universal Adversarial Triggers for Attacking and Analyzing NLP This is the official code for the EMNLP 2019 paper, Universal Adversarial Triggers for

Eric Wallace 248 Dec 17, 2022
🌸 fastText + Bloom embeddings for compact, full-coverage vectors with spaCy

floret: fastText + Bloom embeddings for compact, full-coverage vectors with spaCy floret is an extended version of fastText that can produce word repr

Explosion 222 Dec 16, 2022
End-to-End Speech Processing Toolkit

ESPnet: end-to-end speech processing toolkit system/pytorch ver. 1.0.1 1.1.0 1.2.0 1.3.1 1.4.0 1.5.1 1.6.0 1.7.1 1.8.1 ubuntu18/python3.8/pip ubuntu18

ESPnet 5.9k Jan 03, 2023
Ceaser-Cipher - The Caesar Cipher technique is one of the earliest and simplest method of encryption technique

Ceaser-Cipher The Caesar Cipher technique is one of the earliest and simplest me

Lateefah Ajadi 2 May 12, 2022
PyTorch original implementation of Cross-lingual Language Model Pretraining.

XLM NEW: Added XLM-R model. PyTorch original implementation of Cross-lingual Language Model Pretraining. Includes: Monolingual language model pretrain

Facebook Research 2.7k Dec 27, 2022
πŸš€Clone a voice in 5 seconds to generate arbitrary speech in real-time

English | δΈ­ζ–‡ Features 🌍 Chinese supported mandarin and tested with multiple datasets: aidatatang_200zh, magicdata, aishell3, data_aishell, and etc. ?

Vega 25.6k Dec 31, 2022
Python bot created with Selenium that can guess the daily Wordle word correct 96.8% of the time.

Wordle_Bot Python bot created with Selenium that can guess the daily Wordle word correct 96.8% of the time. It will log onto the wordle website and en

Lucas Polidori 15 Dec 11, 2022
An IVR Chatbot which can exponentially reduce the burden of companies as well as can improve the consumer/end user experience.

IVR-Chatbot Achievements πŸ† Team Uhtred won the Maverick 2.0 Bot-a-thon 2021 organized by AbInbev India. ❓ Problem Statement As we all know that, lot

ARYAMAAN PANDEY 9 Dec 08, 2022
The FinQA dataset from paper: FinQA: A Dataset of Numerical Reasoning over Financial Data

Data and code for EMNLP 2021 paper "FinQA: A Dataset of Numerical Reasoning over Financial Data"

Zhiyu Chen 114 Dec 29, 2022
Switch spaces for knowledge graph embeddings

SwisE Switch spaces for knowledge graph embeddings. Requirements: python3 pytorch numpy tqdm Reproduce the results To reproduce the reported results,

Shuai Zhang 4 Dec 01, 2021
Easy to use, state-of-the-art Neural Machine Translation for 100+ languages

EasyNMT - Easy to use, state-of-the-art Neural Machine Translation This package provides easy to use, state-of-the-art machine translation for more th

Ubiquitous Knowledge Processing Lab 748 Jan 06, 2023
Analyse japanese ebooks using MeCab to determine the difficulty level for japanese learners

japanese-ebook-analysis This aim of this project is to make analysing the contents of a japanese ebook easy and streamline the process for non-technic

Christoffer Aakre 14 Jul 23, 2022
SAINT PyTorch implementation

SAINT-pytorch A Simple pyTorch implementation of "Towards an Appropriate Query, Key, and Value Computation for Knowledge Tracing" based on https://arx

Arshad Shaikh 63 Dec 25, 2022
Uncomplete archive of files from the European Nopsled Team

European Nopsled CTF Archive This is an archive of collected material from various Capture the Flag competitions that the European Nopsled team played

European Nopsled 4 Nov 24, 2021
Kinky furry assitant based on GPT2

KinkyFurs-V0 Kinky furry assistant based on GPT2 How to run python3 V0.py then, open web browser and go to localhost:8080 Requirements: Flask trans

Sparki 1 Jun 11, 2022
Machine learning models from Singapore's NLP research community

SG-NLP Machine learning models from Singapore's natural language processing (NLP) research community. sgnlp is a Python package that allows you to eas

AI Singapore | AI Makerspace 21 Dec 17, 2022