In this project, ETL pipeline is build on data warehouse hosted on AWS Redshift.

Overview

ETL Pipeline for AWS

Project Description

In this project, ETL pipeline is build on data warehouse hosted on AWS Redshift. The data is loaded from S3 to stagging tables on Redshift and SQL queries are written to create analytics tables from staging tables.

Dataset Structure

The dataset is composed of two files the Songs data and Logs data that is present in S3 bucket.

Song Data

The song data is dataset with million of entries. Each file is in JSON format that contains the data about song, artist of that song. Moreover, the files are partitioned by the first three letters of song ID. The single entry of the song dataset looks like

  • {
       "num_songs":1,
       "artist_id":"ARJIE2Y1187B994AB7",
       "artist_latitude":null,
       "artist_longitude":null,
       "artist_location":"",
       "artist_name":"Line Renaud",
       "song_id":"SOUPIRU12A6D4FA1E1",
       "title":"Der Kleine Dompfaff",
       "duration":152.92036,
       "year":0
    }
    

The second dataset consists of log files in JSON format generated by this event simulator based on the songs in the dataset above. These simulate app activity logs from an imaginary music streaming app based on configuration settings.

Logs Data

The logs dataset is also in the JSON formatted, which is formed by the event simulator based on the songs dataset. The logs dataset is the activity logs from the music app.

  • {
        "artist": "Pavement",
        "auth": "Logged in",
        "firstName": "Sylvie",
        "gender": "F",
        "iteminSession": 0,
        "lastName": "Cruz",
        "length": 99.16036,
        "level": "free",
        "location": "Kiamath Falls, OR",
        "method": "PUT",
        "page": "NextSong",
        "registration": 1.540266e+12,
        "sessionId": 345,
        "song": "Mercy: The Laundromat",
        "status": 200,
        "ts": 1541990258796,
        "userAgent": "Mozzilla/5.0...",
        "userId": 10
    }
    

Data Warehouse schema

There are two staging tables: Event table: artist VARCHAR, auth VARCHAR, firstName VARCHAR, gender VARCHAR, itemInSession INT, lastName VARCHAR, length DOUBLE PRECISION, level VARCHAR, location VARCHAR, method VARCHAR , page VARCHAR, registration VARCHAR, sessionid INT, song VARCHAR, status INT, ts VARCHAR, userAgent VARCHAR, userId INT*

Song table* num_songs INTEGER,* artist_id VARCHAR, artist_latitude VARCHAR, artist_longitude VARCHAR, artist_location VARCHAR , artist_name VARCHAR, song_id VARCHAR, title VARCHAR, duration NUMERIC NOT NULL, year integer*

These staging tables helps forming dimension tables and fact tables:

Dimension Tables:
users:
*user_id, first_name, last_name, gender, level*
songs:
*song_id, title, artist_id, year, duration*
artists:
*artist_id, name, location, latitude, longitude*
time:
*start_time, hour, day, week, month, year, weekday*
Fact tables:
Songplays:
*songplay_id, start_time, user_id, level, song_id, artist_id, session_id, location, user_agent*

All the tables contains Primary Key as there should be something unique to identify the rows in the table.

ETL Process

The ETL process is comprises of two steps:

  • Getting data from S3 bucket to staging table
  • Insert the data in dimension and fact table from staging tables using Star Schema

Files Description

- create_tables.py: When create_tables.py run, it will first create tables and drop if table already exists. 
- etl.py: read and process data files
- dwh.cfg: File contains the data warehouse settings for AWS. It contains CLUSTER, IAM_ROLE and S3 settings for the ETL pipeline
- sql_queries: Contains the sql queries for dropping, creation, selection data from tables.
Owner
Mobeen Ahmed
Mobeen Ahmed
Data Analytics: Modeling and Studying data relating to climate change and adoption of electric vehicles

Correlation-Study-Climate-Change-EV-Adoption Data Analytics: Modeling and Studying data relating to climate change and adoption of electric vehicles I

Jonathan Feng 1 Jan 03, 2022
Semi-Automated Data Processing

Perform semi automated exploratory data analysis, feature engineering and feature selection on provided dataset by visualizing every possibilities on each step and assisting the user to make a meanin

Arun Singh Babal 1 Jan 17, 2022
Data Scientist in Simple Stock Analysis of PT Bukalapak.com Tbk for Long Term Investment

Data Scientist in Simple Stock Analysis of PT Bukalapak.com Tbk for Long Term Investment Brief explanation of PT Bukalapak.com Tbk Bukalapak was found

Najibulloh Asror 2 Feb 10, 2022
WAL enables programmable waveform analysis.

This repro introcudes the Waveform Analysis Language (WAL). The initial paper on WAL will appear at ASPDAC'22 and can be downloaded here: https://www.

Institute for Complex Systems (ICS), Johannes Kepler University Linz 40 Dec 13, 2022
ASTR 302: Python for Astronomy (Winter '22)

ASTR 302, Winter 2022, University of Washington: Python for Astronomy Mario Jurić Location When: 2:30-3:50, Monday & Wednesday, Winter quarter 2022 Wh

UW ASTR 302: Python for Astronomy 4 Jan 12, 2022
Single-Cell Analysis in Python. Scales to >1M cells.

Scanpy – Single-Cell Analysis in Python Scanpy is a scalable toolkit for analyzing single-cell gene expression data built jointly with anndata. It inc

Theis Lab 1.4k Jan 05, 2023
Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis

Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis. You write a high level configuration file specifying your in

Blue Collar Bioinformatics 917 Jan 03, 2023
PySpark bindings for H3, a hierarchical hexagonal geospatial indexing system

h3-pyspark: Uber's H3 Hexagonal Hierarchical Geospatial Indexing System in PySpark PySpark bindings for the H3 core library. For available functions,

Kevin Schaich 12 Dec 24, 2022
The Dash Enterprise App Gallery "Oil & Gas Wells" example

This app is based on the Dash Enterprise App Gallery "Oil & Gas Wells" example. For more information and more apps see: Dash App Gallery See the Dash

Austin Caudill 1 Nov 08, 2021
Analyzing Covid-19 Outbreaks in Ontario

My group and I took Covid-19 outbreak statistics from ontario, and analyzed them to find different patterns and future predictions for the virus

Vishwaajeeth Kamalakkannan 0 Jan 20, 2022
This is a tool for speculation of ancestral allel, calculation of sfs and drawing its bar plot.

superSFS This is a tool for speculation of ancestral allel, calculation of sfs and drawing its bar plot. It is easy-to-use and runing fast. What you s

3 Dec 16, 2022
Wafer Fault Detection - Wafer circleci with python

Wafer Fault Detection Problem Statement: Wafer (In electronics), also called a slice or substrate, is a thin slice of semiconductor, such as a crystal

Avnish Yadav 14 Nov 21, 2022
Full ELT process on GCP environment.

Rent Houses Germany - GCP Pipeline Project: The goal of the project is to extract data about house rentals in Germany, store, process and analyze it u

Felipe Demenech Vasconcelos 2 Jan 20, 2022
CSV database for chihuahua (HUAHUA) blockchain transactions

super-fiesta Shamelessly ripped components from https://github.com/hodgerpodger/staketaxcsv - Thanks for doing all the hard work. This code does only

Arlene Macciaveli 1 Jan 07, 2022
Project: Netflix Data Analysis and Visualization with Python

Project: Netflix Data Analysis and Visualization with Python Table of Contents General Info Installation Demo Usage and Main Functionalities Contribut

Kathrin Hälbich 2 Feb 13, 2022
Includes all files needed to satisfy hw02 requirements

HW 02 Data Sets Mean Scale Score for Asian and Hispanic Students, Grades 3 - 8 This dataset provides insights into the New York City education system

7 Oct 28, 2021
Automatic earthquake catalog building workflow: EQTransformer + Siamese EQTransformer + PickNet + REAL + HypoInverse

Automatic regional-scale earthquake catalog building workflow: EQTransformer + Siamese EQTransforme

Xiao Zhuowei 9 Nov 27, 2022
Common bioinformatics database construction

biodb Common bioinformatics database construction 1.taxonomy (Substance classification database) Download the database wget -c https://ftp.ncbi.nlm.ni

sy520 2 Jan 04, 2022
Big Data & Cloud Computing for Oceanography

DS2 Class 2022, Big Data & Cloud Computing for Oceanography Home of the 2022 ISblue Big Data & Cloud Computing for Oceanography class (IMT-A, ENSTA, I

Ocean's Big Data Mining 5 Mar 19, 2022
PyStan, a Python interface to Stan, a platform for statistical modeling. Documentation: https://pystan.readthedocs.io

PyStan PyStan is a Python interface to Stan, a package for Bayesian inference. Stan® is a state-of-the-art platform for statistical modeling and high-

Stan 229 Dec 29, 2022