DockStream: A Docking Wrapper to Enhance De Novo Molecular Design

Overview

DockStream

alt text

Description

DockStream is a docking wrapper providing access to a collection of ligand embedders and docking backends. Docking execution and post hoc analysis can be automated via the benchmarking and analysis workflow. The flexilibity to specifiy a large variety of docking configurations allows tailored protocols for diverse end applications. DockStream can also parallelize docking across CPU cores, increasing throughput. DockStream is integrated with the de novo design platform, REINVENT, allowing one to incorporate docking into the generative process, thus providing the agent with 3D structural information.

Supported Backends

Ligand Embedders

Docking Backends

Note: The CCDC package, the OpenEye toolkit and Schrodinger's tools require you to obtain the respective software from those vendors.

Tutorials and Usage

Detailed Jupyter Notebook tutorials for all DockStream functionalities and workflows are provided in DockStreamCommunity. The DockStream repository here contains input JSON templates located in examples. The templates are organized as follows:

  • target_preparation: Preparing targets for docking
  • ligand_preparation: Generating 3D coordinates for ligands
  • docking: Docking ligands
  • integration: Combining different ligand embedders and docking backends into a single input JSON to run successively

Requirements

Two Conda environments are provided: DockStream via environment.yml and DockStreamFull via environment_full.yml. DockStream suffices for all use cases except when CCDC GOLD software is used, in which case DockStreamFull is required.

git clone <DockStream repository>
cd <DockStream directory>
conda env create -f environment.yml
conda activate DockStream

Enable use of OpenEye software (from REINVENT README)

You will need to set the environmental variable OE_LICENSE to activate the oechem license. One way to do this and keep it conda environment specific is: On the command-line, first:

cd $CONDA_PREFIX
mkdir -p ./etc/conda/activate.d
mkdir -p ./etc/conda/deactivate.d
touch ./etc/conda/activate.d/env_vars.sh
touch ./etc/conda/deactivate.d/env_vars.sh

Then edit ./etc/conda/activate.d/env_vars.sh as follows:

#!/bin/sh
export OE_LICENSE='/opt/scp/software/oelicense/1.0/oe_license.seq1'

and finally, edit ./etc/conda/deactivate.d/env_vars.sh :

#!/bin/sh
unset OE_LICENSE

Unit Tests

After cloning the DockStream repository, enable licenses, if applicable (OpenEye, CCDC, Schrodinger). Then execute the following:

python unit_tests.py

Contributors

Christian Margreitter ([email protected]) Jeff Guo ([email protected]) Alexey Voronov ([email protected])

Comments
  • Glide dockings using local machine

    Glide dockings using local machine

    Hi, I am trying to play with DockStream using Schrodinger. I am wondering if there is the possibility to use it in the local machine specifying $SCHRODINGER/glide instead of the tokens procedure.

    opened by Oulfin 6
  • Bug in Glide backend parallelization

    Bug in Glide backend parallelization

    First, thanks for contributing this nice toolbox.

    This is to report a bug in the following module:

    https://github.com/MolecularAI/DockStream/blob/7bdfd4a67f5c938e3222db59387e5a95e8a59e56/dockstream/core/Schrodinger/Glide_docker.py#L404

    while loop is used to process all sublists in batches. However, the number of processed sublists as recorded in jobs_submitted could be off because this variable is the cumulative sum of len(tmp_output_dirs), which could be smaller than len(cur_slice_sublists) if any of the sublists has no valid molecules to write out.

    The bug may cause some of the sublists get processed repeatedly, and in extreme cases may result in an infinite loop.

    I didn't check if any other backend uses similar logic to parallelize the run and may suffer from the same problem.

    opened by hshany 3
  • Question: Is it possible to feed an sdf file of prepared ligands straight into docking?

    Question: Is it possible to feed an sdf file of prepared ligands straight into docking?

    I'm trying to work out whether it's possible to put an sdf file of prepared ligands straight into a Glide run? i.e. not specifying an input_pool to the docking_runs list? (especially when using docker.py)

    opened by reskyner 2
  • Raise LigandPreparationFailed error

    Raise LigandPreparationFailed error

    For OpenEye Hybrid, it reported LigandPreparationFailed errors for both CORINA and OMEGA backend. One example is shown below: `File "/DockStream/dockstream/core/OpenEyeHybrid/Omega_ligand_preparator.py", line 66, in init raise LigandPreparationFailed("Cannot initialize OMEGA backend - abort.") dockstream.utils.dockstream_exceptions.LigandPreparationFailed: Cannot initialize OMEGA backend - abort.

    During handling of the above exception, another exception occurred:

    Traceback (most recent call last): File "/DockStream/docker.py", line 132, in raise LigandPreparationFailed dockstream.utils.dockstream_exceptions.LigandPreparationFailed`

    Could you please help me with this problem? I tried both the provided receptor-ligand data files from DockStreamCommunity and my own dataset. Both reported same LigandPreparation error. Thank you in advance!

    opened by fangffRS 1
  • ADV 1.2.0 support

    ADV 1.2.0 support

    For DockStream to work with the new AutoDock-Vina 1.2.0 (https://pubs.acs.org/doi/10.1021/acs.jcim.1c00203), the "log-file" specification has to go:

    https://github.com/MolecularAI/DockStream/blob/efefbe52d3cecb8b6d1b72ab719aad1e4702833b/dockstream/core/AutodockVina/AutodockVina_docker.py#L275

    Should be backwards-compatible.

    opened by CMargreitter 1
  • Input file of the function

    Input file of the function "parse_maestro"

    First of all, thank you for your wonderful work in drug development area using AI. I am using Glide to get the result through DockStream. I think the the function parse_maestro in Glide_docker.py can be used to extract setting for docking(In DockStream, this setting is written json file). Is this right? If so, could you tell me the input file type for the parse_mastro?! (eg. maegz, mae, sdf, etc.) I tried the function with maegz (output from Glide docking), but I couldn't get the result. I want to use parse_maestro function to reproduce the setting which applied to previous docking simulation. I would be very grateful if you could give the answer to me. Thanks!

    opened by SejeongPark8354 0
  • Openbabel integration failed

    Openbabel integration failed

    I am trying to implement Dockstream with the vina backend, an exception is raised with openBabel executable.

    Traceback (most recent call last): File "DockStream/target_preparator.py", line 130, in prep = AutodockVinaTargetPreparator(conf=config, target=input_pdb_path, run_number=run_number) File "C:\Users\Y-8874903-E.ESTUDIANT\OneDrive - URV\Escritorio\PLIP interaction\DockStream\dockstream\core\AutodockVina\AutodockVina_target_preparator.py", line 56, in init raise TargetPreparationFailed("Cannot initialize OpenBabel external library, which should be part of the environment - abort.") dockstream.utils.dockstream_exceptions.TargetPreparationFailed: Cannot initialize OpenBabel external library, which should be part of the environment - abort.

    The above exception was the direct cause of the following exception:

    Traceback (most recent call last): File "DockStream/target_preparator.py", line 139, in raise TargetPreparationFailed() from e dockstream.utils.dockstream_exceptions.TargetPreparationFailed

    Follow all necessary steps mentioned in docs.

    opened by Crispae 1
  • Parallelization of ADV for docking

    Parallelization of ADV for docking

    Hello,

    I am trying to run first docking experiments together with reinvent. I am observing many ADV jobs getting started with -cpu 1 (hardcoded), but a few (1 or 2) take quite long and leave all other CPUs idle until the batch has finished and a new batch has started.

    This leaves quite some capacity of a e.g. 16-core machine unused - at least that is my impression when observing the run via top or ps. In the dockstream.config, parallelization.number_cores is set to 16.

    Are there better practical settings to better exploit larger machines with 16-64 CPUs ?

    Lars

    opened by LarsAC 3
  • No module named 'ccdc'

    No module named 'ccdc'

    I believe I successfully installed the normal (not Full) DockStream package as per your instructions on the github site, and then tried to run the unit test, but this fails with a complaint regarding the ccdc module missing (see below). But I want to use Glide so wouldn’t need (nor have) ccdc. I am doing this on Ubuntu 18.04.

    Dockstream/python ./unit_tests.py Traceback (most recent call last): File "./unit_tests.py", line 10, in from tests.Gold import * File "/media/data/evehom/Projects/CompChem/DockStream/tests/Gold/init.py", line 1, in from tests.Gold.test_Gold_target_preparation import * File "/media/data/evehom/Projects/CompChem/DockStream/tests/Gold/test_Gold_target_preparation.py", line 11, in from dockstream.core.Gold.Gold_target_preparator import GoldTargetPreparator File "/media/data/evehom/Projects/CompChem/DockStream/dockstream/core/Gold/Gold_target_preparator.py", line 3, in import ccdc ModuleNotFoundError: No module named 'ccdc'

    opened by Evert-Homan 4
Releases(v1.0.0)
Owner
AstraZeneca - Molecular AI
Software from the Molecular AI department at AstraZeneca R&D
AstraZeneca - Molecular AI
A pytorch-version implementation codes of paper: "BSN++: Complementary Boundary Regressor with Scale-Balanced Relation Modeling for Temporal Action Proposal Generation"

BSN++: Complementary Boundary Regressor with Scale-Balanced Relation Modeling for Temporal Action Proposal Generation A pytorch-version implementation

11 Oct 08, 2022
Code for the IJCAI 2021 paper "Structure Guided Lane Detection"

SGNet Project for the IJCAI 2021 paper "Structure Guided Lane Detection" Abstract Recently, lane detection has made great progress with the rapid deve

Jinming Su 27 Dec 08, 2022
Stereo Radiance Fields (SRF): Learning View Synthesis for Sparse Views of Novel Scenes

Stereo Radiance Fields (SRF): Learning View Synthesis for Sparse Views of Novel Scenes

111 Dec 29, 2022
Housing Price Prediction

This project aim was to predict the price of houses in the Boston area during the great financial crisis through regression, as well as classify houses into different quality categories according to

Florian Klement 1 Jan 27, 2022
Image to Image translation, image generataton, few shot learning

Semi-supervised Learning for Few-shot Image-to-Image Translation [paper] Abstract: In the last few years, unpaired image-to-image translation has witn

yaxingwang 49 Nov 18, 2022
3D-aware GANs based on NeRF (arXiv).

CIPS-3D This repository will contain the code of the paper, CIPS-3D: A 3D-Aware Generator of GANs Based on Conditionally-Independent Pixel Synthesis.

Peterou 563 Dec 31, 2022
Open-source python package for the extraction of Radiomics features from 2D and 3D images and binary masks.

pyradiomics v3.0.1 Build Status Linux macOS Windows Radiomics feature extraction in Python This is an open-source python package for the extraction of

Artificial Intelligence in Medicine (AIM) Program 842 Dec 28, 2022
A booklet on machine learning systems design with exercises

Machine Learning Systems Design Read this booklet here. This booklet covers four main steps of designing a machine learning system: Project setup Data

Chip Huyen 7.6k Jan 08, 2023
GluonMM is a library of transformer models for computer vision and multi-modality research

GluonMM is a library of transformer models for computer vision and multi-modality research. It contains reference implementations of widely adopted baseline models and also research work from Amazon

42 Dec 02, 2022
Code for unmixing audio signals in four different stems "drums, bass, vocals, others". The code is adapted from "Jukebox: A Generative Model for Music"

Status: Archive (code is provided as-is, no updates expected) Disclaimer This code is a based on "Jukebox: A Generative Model for Music" Paper We adju

Wadhah Zai El Amri 24 Dec 29, 2022
Data Preparation, Processing, and Visualization for MoVi Data

MoVi-Toolbox Data Preparation, Processing, and Visualization for MoVi Data, https://www.biomotionlab.ca/movi/ MoVi is a large multipurpose dataset of

Saeed Ghorbani 51 Nov 27, 2022
Toontown: Galaxy, a new Toontown game based on Disney's Toontown Online

Toontown: Galaxy The official archive repo for Toontown: Galaxy, a new Toontown

1 Feb 15, 2022
A PyTorch based deep learning library for drug pair scoring.

Documentation | External Resources | Datasets | Examples ChemicalX is a deep learning library for drug-drug interaction, polypharmacy side effect and

AstraZeneca 597 Dec 30, 2022
My implementation of DeepMind's Perceiver

DeepMind Perceiver (in PyTorch) Disclaimer: This is not official and I'm not affiliated with DeepMind. My implementation of the Perceiver: General Per

Louis Arge 55 Dec 12, 2022
Modeling CNN layers activity with Gaussian mixture model

GMM-CNN This code package implements the modeling of CNN layers activity with Gaussian mixture model and Inference Graphs visualization technique from

3 Aug 05, 2022
Build upon neural radiance fields to create a scene-specific implicit 3D semantic representation, Semantic-NeRF

Semantic-NeRF: Semantic Neural Radiance Fields Project Page | Video | Paper | Data In-Place Scene Labelling and Understanding with Implicit Scene Repr

Shuaifeng Zhi 243 Jan 07, 2023
Implementation of PersonaGPT Dialog Model

PersonaGPT An open-domain conversational agent with many personalities PersonaGPT is an open-domain conversational agent cpable of decoding personaliz

ILLIDAN Lab 42 Jan 01, 2023
A PyTorch implementation of Radio Transformer Networks from the paper "An Introduction to Deep Learning for the Physical Layer".

An Introduction to Deep Learning for the Physical Layer An usable PyTorch implementation of the noisy autoencoder infrastructure in the paper "An Intr

Gram.AI 120 Nov 21, 2022
Converts geometry node attributes to built-in attributes

Attribute Converter Simplifies converting attributes created by geometry nodes to built-in attributes like UVs or vertex colors, as a single click ope

Ivan Notaros 12 Dec 22, 2022
I3-master-layout - Simple master and stack layout script

Simple master and stack layout script | ------ | ----- | | | | | Ma

Tobias S 18 Dec 05, 2022