iAWE is a wonderful dataset for those of us who work on Non-Intrusive Load Monitoring (NILM) algorithms.

Overview


Ax

Description

iAWE is a wonderful dataset for those of us who work on Non-Intrusive Load Monitoring (NILM) algorithms. You can find its main page and description via this link. If you are familiar with NILM-TK API, you probably know that you can work with iAWE hdf5 data file in NILM-TK. However I faced some problems that convinced me to Not use NILM-TK and iAWE hdf5 datafile. Instead, I decided to use the iAWE appliance consumption CSV files and preprocess them myself. So if you have problems with NILM-TK API and iAWE hdf5 data file too, this piece of code may help you to prepare 11 appliance consumption data for your NILM algorithm.

Installation

  • First, download the iAWE dataset using this link (also available on iAWE page!).
  • Download the electricity.tar.gz file.


Ax

  • Download the repo and all its folders.
  • Unzip the electricity.tar.gz and copy all 12 CSV file (plus the labels file into the electricity folder of the downloaded repo.
  • Now everythng is ready for you to start the data preprocessing using the main.py file. But before running the code let me show you what kind of problems we had with the original iAWE hdf5 file.

What problems did we solve?

Well, to be honest NILM-TK documentation is not very clear! If you try to use the hdf5 datafile of the datasets that works with NILM-TK, soon you will admit it. Sometimes you find the the similiar questions on stack overflow but when you try them, they simply don't work due to some updates in NILM-TK (undocumented maybe!?). So, having full control on the data was my main incentive to redo the data preprocessing by my self. You see 12 CSV files in your downloaded files. They belong to:

  • main meter (1)
  • main meter (2)
  • fridge
  • air conditioner (1)
  • air conditioner (2)
  • washing machine
  • laptop
  • iron
  • kitchen outlets
  • television
  • water filter
  • water motor The publisher of iAWE dataset has recommended to ignore the water motor CSV file as it is not accurate (so did we!). Each CSV file consists of timestamp, W, VAR, VA, f, V, PF and A columns. timestamp can be read and converted to read time and date by Python libraries. The publisher of dataset have collected time stamps to reduce the size of final data files which means there is no sampling when the appliances are not consuming power. On the other hand the start time of different appliances measurement is not the same so the length, start and end of most csv files are different. When you plot it in NILM-TK it is fine becuase it reads the timestamps and ignores the NA time steps. However when you want to feed this data into your algorithm it will be a problem which needs data preprocessing. To better understand the problem when using the raw data in iAWE dataset, I've plotted W (active power) of the air conditioner which is CSV file number 4.


AC

As you see, when youplot it in Python the NA timestamp will be plotted as a direct line between last available data and the next available one. It is neither human readable (to some extents!) nor NILM algorithm readable. In fact what your NILM algorithm will be fed with is the series of these values because your algorithm has nothing to do with timestamps! See this is what NILM algorithm sees as the AC power consumption:


AC WO

Now to make it both human readable and NILM algorithm readable, I did as below: (I've commented the code so you can see what is happening in every part of the code)

  • Loaded all CSV files in a dictionary of Dataframes with CSV file orders
  • Measured the lowes and highest timestamp in order to know the length of the measurement period (they have different lengthes!)
  • Created a big dataframe of zeros with from lowest timestamp to the highest one as its index
  • Used the update method on dataframes to transfer the values of dataframes to the big dataframes of zeros (Now all of them have the same length)
  • Putting all dfs into a dictionary of dataframes
  • Casting all the dataframes into the efficient period of sampling (Because now we know which part of sampling is useless)
  • Removing NAN values
  • Dropping unwanted columns
  • Filling NA values with last available value in dataframes
  • Saving all the dataframes as CSV files in the prepared data folder
  • Done!


AC WO

Conclusion

Basically, what we have here after running this code is 11 CSV files of W, VAR, VA, f, V, PF and A for 11 different meters. Prepared CSV file are all of the same length without NAN or NA values which are ready to be fed to any NILM algorithm. Despite the fact that I've done these changes to iAWE dataset, I'm sure the publishers of this dataset have much better solution via NILM-TK to have such an output. However due to lack of documentation or changes in their code I prefered to do this data preprocessing myself. Hope you enjoy it!

Owner
Mozaffar Etezadifar
NILM and RL researcher @ Polytechnique Montreal
Mozaffar Etezadifar
Exact algorithm for computing two-sided statistical tolerance intervals under a normal distribution assumption using Python.

norm-tol-int Exact algorithm for computing two-sided statistical tolerance intervals under a normal distribution assumption using Python. Methods The

Jed Ludlow 1 Jan 06, 2022
FingerPy is a algorithm to measure, analyse and monitor heart-beat using only a video of the user's finger on a mobile cellphone camera.

FingerPy is a algorithm using python, scipy and fft to measure, analyse and monitor heart-beat using only a video of the user's finger on a m

Thiago S. Brasil 37 Oct 21, 2022
Python Package for Reflection Ultrasound Computed Tomography (RUCT) Delay And Sum (DAS) Algorithm

pyruct Python Package for Reflection Ultrasound Computed Tomography (RUCT) Delay And Sum (DAS) Algorithm The imaging setup is explained in these paper

Berkan Lafci 21 Dec 12, 2022
Implementation for Evolution of Strategies for Cooperation

Moraliser Implementation for Evolution of Strategies for Cooperation Dependencies You will need a python3 (= 3.8) environment to run the code. Before

1 Dec 21, 2021
Python Client for Algorithmia Algorithms and Data API

Algorithmia Common Library (python) Python client library for accessing the Algorithmia API For API documentation, see the PythonDocs Algorithm Develo

Algorithmia 138 Oct 26, 2022
Benchmark for Robustness Tests of Control Alrogithms

A gym-like classical control benchmark for evaluating the robustnesses of control and reinforcement learning algorithms.

Kim Taekyung 4 Jan 18, 2022
Algorithms-in-Python - Programs related to DSA in Python for placement practice

Algorithms-in-Python Programs related to DSA in Python for placement practice CO

MAINAK CHAUDHURI 2 Feb 02, 2022
There are some basic arithmatic in Pattern Recognization and Machine Learning writed in Python in this repository

There are some basic arithmatic in Pattern Recognization and Machine Learning writed in Python in this repository

1 Nov 19, 2021
Implementation of Apriori Algorithm for Association Analysis

Implementation of Apriori Algorithm for Association Analysis

3 Nov 14, 2021
Primedice like provably fair algorithm

Primedice like provably fair algorithm

Ryu juheon 3 Dec 02, 2022
Python implementation of Aho-Corasick algorithm for string searching

Python implementation of Aho-Corasick algorithm for string searching

Daniel O'Sullivan 1 Dec 31, 2021
Visualisation for sorting algorithms. Version 2.0

Visualisation for sorting algorithms v2. Upped a notch from version 1. This program provides animates simple, common and popular sorting algorithms, t

Ben Woo 7 Nov 08, 2022
A litle algorithm that i made for transform a picture in a spreadsheet.

PicsToSheets How it works? It is an algorithm designed to transform an image into a spreadsheet file. this converts image pixels to color cells of she

Guilherme de Oliveira 1 Nov 12, 2021
causal-learn: Causal Discovery for Python

causal-learn: Causal Discovery for Python Causal-learn is a python package for causal discovery that implements both classical and state-of-the-art ca

589 Dec 29, 2022
A lightweight, pure-Python mobile robot simulator designed for experiments in Artificial Intelligence (AI) and Machine Learning, especially for Jupyter Notebooks

aitk.robots A lightweight Python robot simulator for JupyterLab, Notebooks, and other Python environments. Goals A lightweight mobile robotics simulat

3 Oct 22, 2021
An NUS timetable generator which uses a genetic algorithm to optimise timetables to suit the needs of NUS students.

A timetable optimiser for NUS which uses an evolutionary algorithm to "breed" a timetable suited to your needs.

Nicholas Lee 3 Jan 09, 2022
Python-Strongest-Encrypter - Transform your text into encrypted symbols using their dictionary

How does the encrypter works? Transform your text into encrypted symbols using t

1 Jul 10, 2022
SortingAlgorithmVisualization - A place for me to learn about sorting algorithms

SortingAlgorithmVisualization A place for me to learn about sorting algorithms.

1 Jan 15, 2022
This project is an implementation of a simple K-means algorithm

Simple-Kmeans-Clustering-Algorithm Abstract K-means is a centroid-based algorithm, or a distance-based algorithm, where we calculate the distances to

Saman Khamesian 7 Aug 09, 2022
This repository is an individual project made at BME with the topic of self-driving car simulator and control algorithm.

BME individual project - NEAT based self-driving car This repository is an individual project made at BME with the topic of self-driving car simulator

NGO ANH TUAN 1 Dec 13, 2021