HashDB is a community-sourced library of hashing algorithms used in malware.

Related tags

Algorithmshashdb
Overview

overview_hashdb

AWS Deploy Chat Support

HashDB

HashDB is a community-sourced library of hashing algorithms used in malware.

How To Use HashDB

HashDB can be used as a stand alone hashing library, but it also feeds the HashDB Lookup Service run by OALabs. This service allows analysts to reverse hashes and retrieve hashed API names and string values.

Stand Alone Module

HashDB can be cloned and used in your reverse engineering scripts like any standard Python module. Some example code follows.

>>> import hashdb
>>> hashdb.list_algorithms()
['crc32']
>>> hashdb.algorithms.crc32.hash(b'test')
3632233996

HashDB Lookup Service

OALabs run a free HashDB Lookup Service that can be used to query a hash table for any hash listed in the HashDb library. Included in the hash tables are the complete set of Windows APIs as well as a many common strings used in malware. You can even add your own strings!

HashDB IDA Plugin

The HashDB lookup service has an IDA Pro plugin that can be used to automate hash lookups directly from IDA! The client can be downloaded from GitHub here.

How To Add New Hashes

HashDB relies on community support to keep our hash library current! Our goal is to have contributors spend no more than five minutes adding a new hash, from first commit, to PR. To achieve this goal we offer the following streamlined process.

  1. Make sure the hash algorithm doesn’t already exist… we know that seems silly but just double check.

  2. Create a branch with a descriptive name.

  3. Add a new Python file to the /algorithms directory with the name of your hash algorithm. Try to use the official name of the algorithm, or if it is unique, use the name of the malware that it is unique to.

  4. Use the following template to setup your new hash algorithm. All fields are mandatory and case sensitive.

    #!/usr/bin/env python
    
    DESCRIPTION = "your hash description here"
    # Type can be either 'unsigned_int' (32bit) or 'unsigned_long' (64bit)
    TYPE = 'unsigned_int'
    # Test must match the exact has of the string 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789'
    TEST_1 = hash_of_string_ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789
    
    
    def hash(data):
        # your hash code here
  5. Double check your Python style, we use Flake8 on Python 3.9. You can try the following lint commands locally from the root of the git repository.

    pip install flake8
    flake8 ./algorithms --count --exit-zero --max-complexity=15 --max-line-length=127 --statistics --show-source
    
  6. Test your code locally using our test suite. Run the folling commands locally from the root of the git repository. Note that you must run pytest as a module rather than directly or it won't pick up our test directory.

    pip install pytest
    python -m pytest
    
  7. Issue a pull request — your new algorithm will be automatically queued for testing and if successful it will be merged.

That’s it! Not only will your new hash be available in the HashDB library but a new hash table will be generated for the HashDB Lookup Service and you can start reversing hashes immediately!

Rules For New Hashes

PRs with changes outside of the /algorithms directory are not part of our automated CI and will be subjected to extra scrutiny.

All hashes must have a valid description in the DESCRIPTION field.

All hashes must have a type of either unsigned_int or unsigned_long in the TYPE field. HashDB currently only accepts unsigned 32bit or 64bit hashes.

All hashes must have the hash of the string ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789 in the TEST_1 field.

All hashes must include a function hash(data) that accepts a byte string and returns a hash of the string.

Adding Custom API Hashes

Some hash algorithms hash the module name and API separately and combine the hashes to create a single module+API hash. An example of this is the standard Metasploit ROR13 hash. These algorithms will not work with the standard wordlist and require a custom wordlist that includes both the module name and API. To handle these we allow custom algorithms that will only return a valid hash for some words.

Adding a custom API hash requires the following additional components.

  1. The TEST_1 field must be set to 4294967294 (-1).

  2. The hash algorithm must return the value 4294967294 for all invalid hashes.

  3. An additional TEST_API_DATA_1 field must be added with an example word that is valid for the algorithm.

  4. An additional TEST_API_1 field must be added with the hash of the TEST_API_DATA_1 field.

Standing On The Shoulders of Giants

A big shout out to the FLARE team for their efforts with shellcode_hashes. Many years ago this project set the bar for quick and easy malware hash reversing and it’s still an extremely useful tool. So why duplicate it?

Frankly, it’s all about the wordlist and accessibility. We have seen a dramatic shift towards using hashes for all sorts of strings in malware now, and the old method of hashing all the Windows’ DLL exports just isn’t good enough. We wanted a solution that could continuously process millions of registry keys and values, filenames, and process names. And we wanted that data available via a REST API so that we could use it our automation workflows, not just our static analysis tools. That being said, we wouldn’t exist without shellcode_hashes, so credit where credit is due 🙌


Owner
OALabs
OALabs
Policy Gradient Algorithms (One Step Actor Critic & PPO) from scratch using Numpy

Policy Gradient Algorithms From Scratch (NumPy) This repository showcases two policy gradient algorithms (One Step Actor Critic and Proximal Policy Op

1 Jan 17, 2022
This repository is an individual project made at BME with the topic of self-driving car simulator and control algorithm.

BME individual project - NEAT based self-driving car This repository is an individual project made at BME with the topic of self-driving car simulator

NGO ANH TUAN 1 Dec 13, 2021
Nature-inspired algorithms are a very popular tool for solving optimization problems.

Nature-inspired algorithms are a very popular tool for solving optimization problems. Numerous variants of nature-inspired algorithms have been develo

NiaOrg 215 Dec 28, 2022
Slight modification to one of the Facebook Salina examples, to test the A2C algorithm on financial series.

Facebook Salina - Gym_AnyTrading Slight modification of Facebook Salina Reinforcement Learning - A2C GPU example for financial series. The gym FOREX d

Francesco Bardozzo 5 Mar 14, 2022
So far implements A* will add more later

Pathfinding_Visualization Finds the shortest path between two nodes. The light blue path is the shortest path. The black nodes are barriers. Created i

Lukas DeLoach 1 Jan 18, 2022
This application solves sudoku puzzles using a backtracking recursive algorithm

This application solves sudoku puzzles using a backtracking recursive algorithm. The user interface is coded with Pygame to allow users to easily input puzzles.

Glenda T 0 May 17, 2022
Leveraging Unique CPS Properties to Design Better Privacy-Enhancing Algorithms

Differential_Privacy_CPS Python implementation of the research paper Leveraging Unique CPS Properties to Design Better Privacy-Enhancing Algorithms Re

Shubhesh Anand 2 Dec 14, 2022
Official implementation of "Path Planning using Neural A* Search" (ICML-21)

Path Planning using Neural A* Search (ICML 2021) This is a repository for the following paper: Ryo Yonetani*, Tatsunori Taniai*, Mohammadamin Barekata

OMRON SINIC X 82 Jan 07, 2023
A* (with 2 heuristic functions), BFS , DFS and DFS iterativeA* (with 2 heuristic functions), BFS , DFS and DFS iterative

Descpritpion This project solves the Taquin game (jeu de taquin) problem using different algorithms : A* (with 2 heuristic functions), BFS , DFS and D

Ayari Ahmed 3 May 09, 2022
With this algorithm you can see all best positions for a Team.

Best Positions Imagine that you have a favorite team, and you want to know until wich position your team can reach With this algorithm you can see all

darlyn 4 Jan 28, 2022
This project is an implementation of a simple K-means algorithm

Simple-Kmeans-Clustering-Algorithm Abstract K-means is a centroid-based algorithm, or a distance-based algorithm, where we calculate the distances to

Saman Khamesian 7 Aug 09, 2022
A fast python implementation of the SimHash algorithm.

This Python package provides hashing algorithms for computing cohort ids of users based on their browsing history. As such, it may be used to compute cohort ids of users following Google's Federated

Hybrid Theory 19 Dec 15, 2022
PathPlanning - Common used path planning algorithms with animations.

Overview This repository implements some common path planning algorithms used in robotics, including Search-based algorithms and Sampling-based algori

Huiming Zhou 5.1k Jan 08, 2023
This project consists of a collaborative filtering algorithm to predict movie reviews ratings from a dataset of Netflix ratings.

Collaborative Filtering - Netflix movie reviews Description This project consists of a collaborative filtering algorithm to predict movie reviews rati

Shashank Kumar 1 Dec 21, 2021
Algorithms written in different programming languages

Data Structures and Algorithms Clean example implementations of data structures and algorithms written in different languages. List of implementations

Zoran Pandovski 1.3k Jan 03, 2023
ROS Basics and TurtleSim

Homework 1: Turtle Control Package Anna Garverick This package draws given waypoints, then waits for a service call with a start position to send the

Anna Garverick 1 Nov 22, 2021
Algorithmic virtual trading using the neostox platform

Documentation Neostox doesnt have an API Support, so this is a little selenium code to automate strategies How to use Clone this repository and then m

Abhishek Mittal 3 Jul 20, 2022
Evol is clear dsl for composable evolutionary algorithms that optimised for joy.

Evol is clear dsl for composable evolutionary algorithms that optimised for joy. Installation We currently support python3.6 and python3.7 and you can

GoDataDriven 178 Dec 27, 2022
iAWE is a wonderful dataset for those of us who work on Non-Intrusive Load Monitoring (NILM) algorithms.

iAWE is a wonderful dataset for those of us who work on Non-Intrusive Load Monitoring (NILM) algorithms. You can find its main page and description via this link. If you are familiar with NILM-TK API

Mozaffar Etezadifar 3 Mar 19, 2022
This is a demo for AAD algorithm.

Asynchronous-Anisotropic-Diffusion-Algorithm This is a demo for AAD algorithm. The subroutine of the anisotropic diffusion algorithm is modified from

3 Mar 21, 2022