Isaac Gym Reinforcement Learning Environments

Overview

Isaac Gym Benchmark Environments

Website | Technical Paper | Videos

About this repository

This repository contains example RL environments for the NVIDIA Isaac Gym high performance environments described in our NeurIPS 2021 Datasets and Benchmarks paper

Installation

Download the Isaac Gym Preview 3 release from the website, then follow the installation instructions in the documentation. We highly recommend using a conda environment to simplify set up.

Ensure that Isaac Gym works on your system by running one of the examples from the python/examples directory, like joint_monkey.py. Follow troubleshooting steps described in the Isaac Gym Preview 3 install instructions if you have any trouble running the samples.

Once Isaac Gym is installed and samples work within your current python environment, install this repo:

pip install -e .

Running the benchmarks

To train your first policy, run this line:

python train.py task=Cartpole

Cartpole should train to the point that the pole stays upright within a few seconds of starting.

Here's another example - Ant locomotion:

python train.py task=Ant

Note that by default we show a preview window, which will usually slow down training. You can use the v key while running to disable viewer updates and allow training to proceed faster. Hit the v key again to resume viewing after a few seconds of training, once the ants have learned to run a bit better.

Use the esc key or close the viewer window to stop training early.

Alternatively, you can train headlessly, as follows:

python train.py task=Ant headless=True

Ant may take a minute or two to train a policy you can run. When running headlessly, you can stop it early using Control-C in the command line window.

Loading trained models // Checkpoints

Checkpoints are saved in the folder runs/EXPERIMENT_NAME/nn where EXPERIMENT_NAME defaults to the task name, but can also be overridden via the experiment argument.

To load a trained checkpoint and continue training, use the checkpoint argument:

python train.py task=Ant checkpoint=runs/Ant/nn/Ant.pth

To load a trained checkpoint and only perform inference (no training), pass test=True as an argument, along with the checkpoint name. To avoid rendering overhead, you may also want to run with fewer environments using num_envs=64:

python train.py task=Ant checkpoint=runs/Ant/nn/Ant.pth test=True num_envs=64

Note that If there are special characters such as [ or = in the checkpoint names, you will need to escape them and put quotes around the string. For example, checkpoint="./runs/Ant/nn/last_Antep\=501rew\[5981.31\].pth"

Configuration and command line arguments

We use Hydra to manage the config. Note that this has some differences from previous incarnations in older versions of Isaac Gym.

Key arguments to the train.py script are:

  • task=TASK - selects which task to use. Any of AllegroHand, Ant, Anymal, AnymalTerrain, BallBalance, Cartpole, FrankaCabinet, Humanoid, Ingenuity Quadcopter, ShadowHand, ShadowHandOpenAI_FF, ShadowHandOpenAI_LSTM, and Trifinger (these correspond to the config for each environment in the folder isaacgymenvs/config/task)
  • train=TRAIN - selects which training config to use. Will automatically default to the correct config for the environment (ie. PPO ).
  • num_envs=NUM_ENVS - selects the number of environments to use (overriding the default number of environments set in the task config).
  • seed=SEED - sets a seed value for randomizations, and overrides the default seed set up in the task config
  • sim_device=SIM_DEVICE_TYPE - Device used for physics simulation. Set to cuda:0 (default) to use GPU and to cpu for CPU. Follows PyTorch-like device syntax.
  • rl_device=RL_DEVICE - Which device / ID to use for the RL algorithm. Defaults to cuda:0, and also follows PyTorch-like device syntax.
  • graphics_device_id=GRAHPICS_DEVICE_ID - Which Vulkan graphics device ID to use for rendering. Defaults to 0. Note - this may be different from CUDA device ID, and does not follow PyTorch-like device syntax.
  • pipeline=PIPELINE - Which API pipeline to use. Defaults to gpu, can also set to cpu. When using the gpu pipeline, all data stays on the GPU and everything runs as fast as possible. When using the cpu pipeline, simulation can run on either CPU or GPU, depending on the sim_device setting, but a copy of the data is always made on the CPU at every step.
  • test=TEST- If set to True, only runs inference on the policy and does not do any training.
  • checkpoint=CHECKPOINT_PATH - Set to path to the checkpoint to load for training or testing.
  • headless=HEADLESS - Whether to run in headless mode.
  • experiment=EXPERIMENT - Sets the name of the experiment.
  • max_iterations=MAX_ITERATIONS - Sets how many iterations to run for. Reasonable defaults are provided for the provided environments.

Hydra also allows setting variables inside config files directly as command line arguments. As an example, to set the discount rate for a rl_games training run, you can use train.params.config.gamma=0.999. Similarly, variables in task configs can also be set. For example, task.env.enableDebugVis=True.

Hydra Notes

Default values for each of these are found in the isaacgymenvs/config/config.yaml file.

The way that the task and train portions of the config works are through the use of config groups. You can learn more about how these work here The actual configs for task are in isaacgymenvs/config/task/ .yaml and for train in isaacgymenvs/config/train/ PPO.yaml .

In some places in the config you will find other variables referenced (for example, num_actors: ${....task.env.numEnvs}). Each . represents going one level up in the config hierarchy. This is documented fully here.

Tasks

Source code for tasks can be found in isaacgymenvs/tasks.

Each task subclasses the VecEnv base class in isaacgymenvs/base/vec_task.py.

Refer to docs/framework.md for how to create your own tasks.

Full details on each of the tasks available can be found in the RL examples documentation.

Domain Randomization

IsaacGymEnvs includes a framework for Domain Randomization to improve Sim-to-Real transfer of trained RL policies. You can read more about it here.

Reproducibility and Determinism

If deterministic training of RL policies is important for your work, you may wish to review our Reproducibility and Determinism Documentation.

Troubleshooting

Please review the Isaac Gym installation instructions first if you run into any issues.

You can either submit issues through GitHub or through the Isaac Gym forum here.

Citing

Please cite this work as:

@misc{makoviychuk2021isaac,
      title={Isaac Gym: High Performance GPU-Based Physics Simulation For Robot Learning}, 
      author={Viktor Makoviychuk and Lukasz Wawrzyniak and Yunrong Guo and Michelle Lu and Kier Storey and Miles Macklin and David Hoeller and Nikita Rudin and Arthur Allshire and Ankur Handa and Gavriel State},
      year={2021},
      journal={arXiv preprint arXiv:2108.10470}
}

Note if you use the ANYmal rough terrain environment in your work, please ensure you cite the following work:

@misc{rudin2021learning,
      title={Learning to Walk in Minutes Using Massively Parallel Deep Reinforcement Learning}, 
      author={Nikita Rudin and David Hoeller and Philipp Reist and Marco Hutter},
      year={2021},
      journal = {arXiv preprint arXiv:2109.11978}
}

If you use the Trifinger environment in your work, please ensure you cite the following work:

@misc{isaacgym-trifinger,
  title     = {{Transferring Dexterous Manipulation from GPU Simulation to a Remote Real-World TriFinger}},
  author    = {Allshire, Arthur and Mittal, Mayank and Lodaya, Varun and Makoviychuk, Viktor and Makoviichuk, Denys and Widmaier, Felix and Wuthrich, Manuel and Bauer, Stefan and Handa, Ankur and Garg, Animesh},
  year      = {2021},
  journal = {arXiv preprint arXiv:2108.09779}
}
Owner
NVIDIA Omniverse
NVIDIA Omniverse is a powerful, multi-GPU, real-time simulation and collaboration platform for 3D production pipelines based on Pixar's USD
NVIDIA Omniverse
CURL: Contrastive Unsupervised Representations for Reinforcement Learning

CURL Rainbow Status: Archive (code is provided as-is, no updates expected) This is an implementation of CURL: Contrastive Unsupervised Representations

Aravind Srinivas 46 Dec 12, 2022
ICCV2021 Papers with Code

ICCV2021 Papers with Code

Amusi 1.4k Jan 02, 2023
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥

face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa

Zhao Jian 3.1k Jan 04, 2023
Codebase for the self-supervised goal reaching benchmark introduced in the LEXA paper

LEXA Benchmark Codebase for the self-supervised goal reaching benchmark introduced in the LEXA paper (Discovering and Achieving Goals via World Models

Oleg Rybkin 36 Dec 22, 2022
A PyTorch Toolbox for Face Recognition

FaceX-Zoo FaceX-Zoo is a PyTorch toolbox for face recognition. It provides a training module with various supervisory heads and backbones towards stat

JDAI-CV 1.6k Jan 06, 2023
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

Introduction QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and

Yu 1.4k Dec 30, 2022
A PyTorch implementation of " EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks."

EfficientNet A PyTorch implementation of EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. [arxiv] [Official TF Repo] Implemen

AhnDW 298 Dec 10, 2022
A colab notebook for training Stylegan2-ada on colab, transfer learning onto your own dataset.

Stylegan2-Ada-Google-Colab-Starter-Notebook A no thrills colab notebook for training Stylegan2-ada on colab. transfer learning onto your own dataset h

Harnick Khera 66 Dec 16, 2022
Controlling Hill Climb Racing with Hand Tacking

Controlling Hill Climb Racing with Hand Tacking Opened Palm for Gas Closed Palm for Brake

Rohit Ingole 3 Jan 18, 2022
IndoNLI: A Natural Language Inference Dataset for Indonesian

IndoNLI: A Natural Language Inference Dataset for Indonesian This is a repository for data and code accompanying our EMNLP 2021 paper "IndoNLI: A Natu

15 Feb 10, 2022
A basic duplicate image detection service using perceptual image hash functions and nearest neighbor search, implemented using faiss, fastapi, and imagehash

Duplicate Image Detection Getting Started Install dependencies pip install -r requirements.txt Run service python main.py Testing Test with pytest How

Matthew Podolak 21 Nov 11, 2022
PyTorch implementations of algorithms for density estimation

pytorch-flows A PyTorch implementations of Masked Autoregressive Flow and some other invertible transformations from Glow: Generative Flow with Invert

Ilya Kostrikov 546 Dec 05, 2022
the code for our CVPR 2021 paper Bilateral Grid Learning for Stereo Matching Network [BGNet]

BGNet This repository contains the code for our CVPR 2021 paper Bilateral Grid Learning for Stereo Matching Network [BGNet] Environment Python 3.6.* C

3DCV developer 87 Nov 29, 2022
[CVPR2021] Look before you leap: learning landmark features for one-stage visual grounding.

LBYL-Net This repo implements paper Look Before You Leap: Learning Landmark Features For One-Stage Visual Grounding CVPR 2021. Getting Started Prerequ

SVIP Lab 45 Dec 12, 2022
This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression problems

Doctoral dissertation of Zheng Zhao This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression pro

Zheng Zhao 21 Nov 14, 2022
This repo contains the pytorch implementation for Dynamic Concept Learner (accepted by ICLR 2021).

DCL-PyTorch Pytorch implementation for the Dynamic Concept Learner (DCL). More details can be found at the project page. Framework Grounding Physical

Zhenfang Chen 31 Jan 06, 2023
An self sufficient AI that crawls the web to learn how to generate art from keywords

Roxx-IO - The Smart Artist AI! TO DO / IDEAS Implement Web-Scraping Functionality Figure out a less annoying (and an off button for it) text to speech

Tatz 5 Mar 21, 2022
Variational autoencoder for anime face reconstruction

VAE animeface Variational autoencoder for anime face reconstruction Introduction This repository is an exploratory example to train a variational auto

Minzhe Zhang 2 Dec 11, 2021
Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning

Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning This is the official repository for Conservative and Adaptive Penalty fo

7 Nov 22, 2022
A smaller subset of 10 easily classified classes from Imagenet, and a little more French

Imagenette 🎶 Imagenette, gentille imagenette, Imagenette, je te plumerai. 🎶 (Imagenette theme song thanks to Samuel Finlayson) NB: Versions of Image

fast.ai 718 Jan 01, 2023