document image degradation

Overview

ocrodeg

The ocrodeg package is a small Python library implementing document image degradation for data augmentation for handwriting recognition and OCR applications.

The following illustrates the kinds of degradations available from ocrodeg.

%pylab inline
Populating the interactive namespace from numpy and matplotlib
rc("image", cmap="gray", interpolation="bicubic")
figsize(10, 10)
import scipy.ndimage as ndi
import ocrodeg

image = imread("testdata/W1P0.png")
imshow(image)
<matplotlib.image.AxesImage at 0x7fabcc7ab390>

png

PAGE ROTATION

This is just for illustration; for large page rotations, you can just use ndimage.

for i, angle in enumerate([0, 90, 180, 270]):
    subplot(2, 2, i+1)
    imshow(ndi.rotate(image, angle))

png

RANDOM GEOMETRIC TRANSFORMATIONS

random_transform generates random transformation parameters that work reasonably well for document image degradation. You can override the ranges used by each of these parameters by keyword arguments.

ocrodeg.random_transform()
{'angle': -0.016783842893063807,
 'aniso': 0.805280370671964,
 'scale': 0.9709145529604223,
 'translation': (0.014319657859164045, 0.03676897986267606)}

Here are four samples generated by random transforms.

for i in xrange(4):
    subplot(2, 2, i+1)
    imshow(ocrodeg.transform_image(image, **ocrodeg.random_transform()))

png

You can use transform_image directly with the different parameters to get a feel for the ranges and effects of these parameters.

for i, angle in enumerate([-2, -1, 0, 1]):
    subplot(2, 2, i+1)
    imshow(ocrodeg.transform_image(image, angle=angle*pi/180))

png

for i, angle in enumerate([-2, -1, 0, 1]):
    subplot(2, 2, i+1)
    imshow(ocrodeg.transform_image(image, angle=angle*pi/180)[1000:1500, 750:1250])

png

for i, aniso in enumerate([0.5, 1.0, 1.5, 2.0]):
    subplot(2, 2, i+1)
    imshow(ocrodeg.transform_image(image, aniso=aniso))

png

for i, aniso in enumerate([0.5, 1.0, 1.5, 2.0]):
    subplot(2, 2, i+1)
    imshow(ocrodeg.transform_image(image, aniso=aniso)[1000:1500, 750:1250])

png

for i, scale in enumerate([0.5, 0.9, 1.0, 2.0]):
    subplot(2, 2, i+1)
    imshow(ocrodeg.transform_image(image, scale=scale))

png

for i, scale in enumerate([0.5, 0.9, 1.0, 2.0]):
    subplot(2, 2, i+1)
    h, w = image.shape
    imshow(ocrodeg.transform_image(image, scale=scale)[h//2-200:h//2+200, w//3-200:w//3+200])

png

RANDOM DISTORTIONS

Pages often also have a small degree of warping. This can be modeled by random distortions. Very small and noisy random distortions also model ink spread, while large 1D random distortions model paper curl.

for i, sigma in enumerate([1.0, 2.0, 5.0, 20.0]):
    subplot(2, 2, i+1)
    noise = ocrodeg.bounded_gaussian_noise(image.shape, sigma, 5.0)
    distorted = ocrodeg.distort_with_noise(image, noise)
    h, w = image.shape
    imshow(distorted[h//2-200:h//2+200, w//3-200:w//3+200])

png

RULED SURFACE DISTORTIONS

for i, mag in enumerate([5.0, 20.0, 100.0, 200.0]):
    subplot(2, 2, i+1)
    noise = ocrodeg.noise_distort1d(image.shape, magnitude=mag)
    distorted = ocrodeg.distort_with_noise(image, noise)
    h, w = image.shape
    imshow(distorted[:1500])

png

BLUR, THRESHOLDING, NOISE

There are a range of utilities for modeling imaging artifacts: blurring, noise, inkspread.

patch = image[1900:2156, 1000:1256]
imshow(patch)
<matplotlib.image.AxesImage at 0x7fabc88c7e10>

png

for i, s in enumerate([0, 1, 2, 4]):
    subplot(2, 2, i+1)
    blurred = ndi.gaussian_filter(patch, s)
    imshow(blurred)

png

for i, s in enumerate([0, 1, 2, 4]):
    subplot(2, 2, i+1)
    blurred = ndi.gaussian_filter(patch, s)
    thresholded = 1.0*(blurred>0.5)
    imshow(thresholded)

png

reload(ocrodeg)
for i, s in enumerate([0.0, 1.0, 2.0, 4.0]):
    subplot(2, 2, i+1)
    blurred = ocrodeg.binary_blur(patch, s)
    imshow(blurred)

png

for i, s in enumerate([0.0, 0.1, 0.2, 0.3]):
    subplot(2, 2, i+1)
    blurred = ocrodeg.binary_blur(patch, 2.0, noise=s)
    imshow(blurred)

png

MULTISCALE NOISE

reload(ocrodeg)
for i in range(4):
    noisy = ocrodeg.make_multiscale_noise_uniform((512, 512))
    subplot(2, 2, i+1); imshow(noisy, vmin=0, vmax=1)

png

RANDOM BLOBS

for i, s in enumerate([2, 5, 10, 20]):
    subplot(2, 2, i+1)
    imshow(ocrodeg.random_blobs(patch.shape, 3e-4, s))

png

reload(ocrodeg)
blotched = ocrodeg.random_blotches(patch, 3e-4, 1e-4)
#blotched = minimum(maximum(patch, ocrodeg.random_blobs(patch.shape, 30, 10)), 1-ocrodeg.random_blobs(patch.shape, 15, 8))
subplot(121); imshow(patch); subplot(122); imshow(blotched)
<matplotlib.image.AxesImage at 0x7fabc8a35490>

png

FIBROUS NOISE

imshow(ocrodeg.make_fibrous_image((256, 256), 700, 300, 0.01))
<matplotlib.image.AxesImage at 0x7fabc8852450>

png

FOREGROUND / BACKGROUND SELECTION

subplot(121); imshow(patch); subplot(122); imshow(ocrodeg.printlike_multiscale(patch))
<matplotlib.image.AxesImage at 0x7fabc8676d90>

png

subplot(121); imshow(patch); subplot(122); imshow(ocrodeg.printlike_fibrous(patch))
<matplotlib.image.AxesImage at 0x7fabc8d1b250>

png

Owner
NVIDIA Research Projects
NVIDIA Research Projects
Handwritten Text Recognition (HTR) using TensorFlow 2.x

Handwritten Text Recognition (HTR) system implemented using TensorFlow 2.x and trained on the Bentham/IAM/Rimes/Saint Gall/Washington offline HTR data

Arthur Flôr 160 Dec 21, 2022
A collection of resources (including the papers and datasets) of OCR (Optical Character Recognition).

OCR Resources This repository contains a collection of resources (including the papers and datasets) of OCR (Optical Character Recognition). Contents

Zuming Huang 363 Jan 03, 2023
A curated list of papers, code and resources pertaining to image composition

A curated list of resources including papers, datasets, and relevant links pertaining to image composition.

BCMI 391 Dec 30, 2022
Distilling Knowledge via Knowledge Review, CVPR 2021

ReviewKD Distilling Knowledge via Knowledge Review Pengguang Chen, Shu Liu, Hengshuang Zhao, Jiaya Jia This project provides an implementation for the

DV Lab 194 Dec 28, 2022
Semantic-based Patch Detection for Binary Programs

PMatch Semantic-based Patch Detection for Binary Programs Requirement tensorflow-gpu 1.13.1 numpy 1.16.2 scikit-learn 0.20.3 ssdeep 3.4 Usage tar -xvz

Mr.Curiosity 3 Sep 02, 2022
An OCR evaluation tool

dinglehopper dinglehopper is an OCR evaluation tool and reads ALTO, PAGE and text files. It compares a ground truth (GT) document page with a OCR resu

QURATOR-SPK 40 Dec 20, 2022
Validate and transform various OCR file formats (hOCR, ALTO, PAGE, FineReader)

ocr-fileformat Validate and transform between OCR file formats (hOCR, ALTO, PAGE, FineReader) Installation Docker System-wide Usage CLI GUI API Transf

Universitätsbibliothek Mannheim 152 Dec 20, 2022
OCR system for Arabic language that converts images of typed text to machine-encoded text.

Arabic OCR OCR system for Arabic language that converts images of typed text to machine-encoded text. The system currently supports only letters (29 l

Hussein Youssef 144 Jan 05, 2023
利用Paddle框架复现CRAFT

CRAFT-Paddle 利用Paddle框架复现CRAFT CRAFT 本项目基于paddlepaddle框架复现CRAFT,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: CRAFT: Character-Region Awarenes

QuanHao Guo 2 Mar 07, 2022
A semi-automatic open-source tool for Layout Analysis and Region EXtraction on early printed books.

LAREX LAREX is a semi-automatic open-source tool for layout analysis on early printed books. It uses a rule based connected components approach which

162 Jan 05, 2023
A tool to make dumpy among us GIFS

Among Us Dumpy Gif Maker Made by ThatOneCalculator & Pixer415 With help from Telk, karl-police, and auguwu! Please credit this repository when you use

Kainoa Kanter 535 Jan 07, 2023
Introduction to Augmented Reality (AR) with Python 3 and OpenCV 4.2.

Introduction to Augmented Reality (AR) with Python 3 and OpenCV 4.2.

fernanda rodríguez 85 Jan 02, 2023
Program created with opencv that allows you to automatically count your repetitions on several fitness exercises.

Virtual partner of gym Description Program created with opencv that allows you to automatically count your repetitions on several fitness exercises li

1 Jan 04, 2022
Distort a video using Seam Carving (video) and Vibrato effect (sound)

Distort videos Applies a Seam Carving algorithm (aka liquid rescale) on every frame of a video, and a vibrato effect on the audio to distort the video

AlexZeGamer 6 Dec 06, 2022
Controlling Volume by Hand Gestures

This program allows the user to control the volume of their device with specific hand gestures involving their thumb and index finger!

Riddhi Bajaj 1 Nov 11, 2021
Pytorch implementation of PSEnet with Pyramid Attention Network as feature extractor

Scene Text-Spotting based on PSEnet+CRNN Pytorch implementation of an end to end Text-Spotter with a PSEnet text detector and CRNN text recognizer. We

azhar shaikh 62 Oct 10, 2022
End-to-end pipeline for real-time scene text detection and recognition.

Real-time-Scene-Text-Detection-and-Recognition-System End-to-end pipeline for real-time scene text detection and recognition. The detection model use

Fangneng Zhan 89 Aug 04, 2022
Open Source Differentiable Computer Vision Library for PyTorch

Kornia is a differentiable computer vision library for PyTorch. It consists of a set of routines and differentiable modules to solve generic computer

kornia 7.6k Jan 04, 2023
In this project we will be using the live feed coming from the webcam to create a virtual mouse with complete functionalities.

Virtual Mouse Using OpenCV In this project we will be using the live feed coming from the webcam to create a virtual mouse using hand tracking. Projec

Hassan Shahzad 8 Dec 20, 2022