A curated list of papers, code and resources pertaining to image composition

Overview

Awesome Image Composition Awesome

A curated list of resources including papers, datasets, and relevant links pertaining to image composition.

Contributing

Contributions are welcome. If you wish to contribute, feel free to send a pull request. If you have suggestions for new sections to be included, please raise an issue and discuss before sending a pull request.

Table of Contents

Surveys

  • Li Niu, Wenyan Cong, Liu Liu, Yan Hong, Bo Zhang, Jing Liang, Liqing Zhang: "Making Images Real Again: A Comprehensive Survey on Deep Image Composition." arXiv preprint arXiv:2106.14490 (2021). [arXiv]

Papers

Image blending

  • Huikai Wu, Shuai Zheng, Junge Zhang, Kaiqi Huang: "GP-GAN: Towards Realistic High-Resolution Image Blending." ACM MM (2019) [arXiv] [code]
  • Lingzhi Zhang, Tarmily Wen, Jianbo Shi: "Deep Image Blending." WACV (2020) [pdf] [arXiv] [code]

Image harmonization

  • Jun Ling, Han Xue, Li Song, Rong Xie, Xiao Gu: "Region-Aware Adaptive Instance Normalization for Image Harmonization." CVPR (2021) [pdf] [supp] [arXiv] [code].
  • Zonghui Guo, Haiyong Zheng, Yufeng Jiang, Zhaorui Gu, Bing Zheng: "Intrinsic Image Harmonization." CVPR (2021) [pdf] [supp] [code].
  • Wenyan Cong, Li Niu, Jianfu Zhang, Jing Liang, Liqing Zhang: "BargainNet: Background-Guided Domain Translation for Image Harmonization." ICME (2021) [arXiv] [code].
  • Konstantin Sofiiuk, Polina Popenova, Anton Konushin: "Foreground-aware Semantic Representations for Image Harmonization." WACV (2021) [pdf] [supp] [arXiv] [code]
  • Guoqing Hao, Satoshi Iizuka, Kazuhiro Fukui: "Image Harmonization with Attention-based Deep Feature Modulation." BMVC (2020) [pdf] [supp] [code]
  • Wenyan Cong, Jianfu Zhang, Li Niu, Liu Liu, Zhixin Ling, Weiyuan Li, Liqing Zhang: "DoveNet: Deep Image Harmonization via Domain Verification." CVPR (2020) [pdf] [supp] [arXiv] [code].
  • Xiaodong Cun, Chi-Man Pun: "Improving the Harmony of the Composite Image by Spatial-Separated Attention Module." IEEE Trans. Image Process. 29: 4759-4771 (2020) [pdf] [arXiv] [code]
  • Yi-Hsuan Tsai, Xiaohui Shen, Zhe Lin, Kalyan Sunkavalli, Xin Lu, Ming-Hsuan Yang: "Deep Image Harmonization." CVPR (2017) [pdf] [supp] [arXiv] [code]

Shadow generation

  • Daquan Liu, Chengjiang Long, Hongpan Zhang, Hanning Yu, Xinzhi Dong, Chunxia Xiao: "ARshadowGAN: Shadow generative adversarial network for augmented reality in single light scenes." CVPR (2020) [pdf] [code].

  • Shuyang Zhang, Runze Liang, Miao Wang: "ShadowGAN: Shadow synthesis for virtual objects with conditional adversarial networks." Computational Visual Media (2019) [pdf].

  • Fangneng Zhan, Shijian Lu, Changgong Zhang, Feiying Ma, Xuansong Xie: "Adversarial Image Composition with Auxiliary Illumination." ACCV (2020) [pdf].

Object placement and spatial transformation

  • Lingzhi Zhang, Tarmily Wen, Jie Min, Jiancong Wang, David Han, Jianbo Shi: "Learning Object Placement by Inpainting for Compositional Data Augmentation" ECCV (2020) [pdf]

  • Samaneh Azadi, Deepak Pathak, Sayna Ebrahimi, Trevor Darrell: "Compositional GAN: Learning Image-Conditional Binary Composition" International Journal of Computer Vision (2020) [arXiv] [code]

  • Song-Hai Zhang, Zhengping Zhou, Bin Liu, Xi Dong, Peter Hall: "What and Where: A Context-based Recommendation System for Object Insertion" Computational Visual Media (2020) [arXiv]

  • Shashank Tripathi, Siddhartha Chandra, Amit Agrawal, Ambrish Tyagi, James M. Rehg, Visesh Chari: "Learning to Generate Synthetic Data via Compositing" CVPR (2019) [arXiv]

  • Haoshu Fang, Jianhua Sun, Runzhong Wang, Minghao Gou, Yonglu Li, Cewu Lu: "InstaBoost: Boosting Instance Segmentation via Probability Map Guided Copy-Pasting" ICCV (2019) [arXiv] [code]

  • Chen-Hsuan Lin, Ersin Yumer, Oliver Wang, Eli Shechtman, Simon Lucey: "ST-GAN: Spatial Transformer Generative Adversarial Networks for Image Compositing" CVPR (2018) [arXiv] [code]

  • Donghoon Lee, Sifei Liu, Jinwei Gu, Ming-Yu Liu, Ming-Hsuan Yang, Jan Kautz: "Context-Aware Synthesis and Placement of Object Instances" NeurIPS (2018) [arXiv] [code]

  • Fuwen Tan, Crispin Bernier, Benjamin Cohen, Vicente Ordonez, Connelly Barnes: "Where and Who? Automatic Semantic-Aware Person Composition" WACV (2018) [arXiv][code]

  • Tal Remez, Jonathan Huang, Matthew Brown: "learning to segment via cut-and-paste" ECCV (2018) [arXiv] [code]

Occlusion

  • Samaneh Azadi, Deepak Pathak, Sayna Ebrahimi, Trevor Darrell: "Compositional GAN: Learning Image-Conditional Binary Composition." IJCV (2020) [arXiv] [code]
  • Fangneng Zhan, Jiaxing Huang, Shijian Lu, "Hierarchy Composition GAN for High-fidelity Image Synthesis." Transactions on cybernetics (2021) [arXiv]

Datasets

  • iHarmony4 (image harmonization): It contains four subdatasets: HCOCO, HAdobe5k, HFlickr, Hday2night, with a total of 73,146 pairs of unharmonized images and harmonized images. [pdf] [link]
  • GMSDataset (image harmonization): It contains 183 images with image resolution of 1940*1440. It consists of 16 different objects and for each object, one source image and 11 target images in different background scenes and illumination conditions are captured. [pdf] [link] (access code: ekn2)
  • HVIDIT (image harmonization): A dataset built upon VIDIT (Virtual Image Dataset for Illumination Transfer) dataset for image harmonization. It contains 3007 images of 276 scenes for training and 329 images of 24 scenes for testing. [pdf] [link]
  • RHHarmony (image harmonization): A rendered image harmonization dataset, which contains 15000 ground-truth rendered images and has the potential to generate 135000 composite rendered images. [pdf] [link]
  • Shadow-AR (shadow generation): It contains 3,000 quintuples, Each quintuple consists of 5 images 640×480 resolution: a synthetic image without the virtual object shadow and its corresponding image containing the virtual object shadow, a mask of the virtual object, a labeled real-world shadow matting and its corresponding labeled occluder. [pdf] [link]
  • DESOBA (shadow generation): It contains 840 training images with totally 2,999 object-shadow pairs and 160 test images with totally 624 object-shadow pairs. [pdf] [link]
  • OPA (object placement): It contains 62,074 training images and 11,396 test images, in which the foregrounds/backgrounds in training set and test set have no overlap. The training (resp., test) set contains 21,351 (resp.,3,566) positive samples and 40,724 (resp., 7,830) negative samples. [pdf] [link]

Other resources

Owner
BCMI
Center for Brain-Like Computing and Machine Intelligence, Shanghai Jiao Tong University.
BCMI
Ackermann Line Follower Robot Simulation.

Ackermann Line Follower Robot This is a simulation of a line follower robot that works with steering control based on Stanley: The Robot That Won the

Lucas Mazzetto 2 Apr 16, 2022
a deep learning model for page layout analysis / segmentation.

OCR Segmentation a deep learning model for page layout analysis / segmentation. dependencies tensorflow1.8 python3 dataset: uw3-framed-lines-degraded-

99 Dec 12, 2022
This Repository contain Opencv Projects in python

Python-Opencv OpenCV OpenCV (Open Source Computer Vision Library) is an open source computer vision and machine learning software library. OpenCV was

Yash Sakre 2 Nov 06, 2021
CUTIE (TensorFlow implementation of Convolutional Universal Text Information Extractor)

CUTIE TensorFlow implementation of the paper "CUTIE: Learning to Understand Documents with Convolutional Universal Text Information Extractor." Xiaohu

Zhao,Xiaohui 147 Dec 20, 2022
Face Detection with DLIB

Face Detection with DLIB In this project, we have detected our face with dlib and opencv libraries. Setup This Project Install DLIB & OpenCV You can i

Can 2 Jan 16, 2022
In this project we will be using the live feed coming from the webcam to create a virtual mouse with complete functionalities.

Virtual Mouse Using OpenCV In this project we will be using the live feed coming from the webcam to create a virtual mouse using hand tracking. Projec

Hassan Shahzad 8 Dec 20, 2022
Virtualdragdrop - Virtual Drag and Drop Using OpenCV and Arduino

Virtualdragdrop - Virtual Drag and Drop Using OpenCV and Arduino

Rizky Dermawan 4 Mar 10, 2022
The Open Source Framework for Machine Vision

SimpleCV Quick Links: About Installation [Docker] (#docker) Ubuntu Virtual Environment Arch Linux Fedora MacOS Windows Raspberry Pi SimpleCV Shell Vid

Sight Machine 2.6k Dec 31, 2022
Face Recognizer using Opencv Python

Face Recognizer using Opencv Python The first step create your own dataset with file open-cv-create_dataset second step You can put the photo accordin

Han Izza 2 Nov 16, 2021
fishington.io bot with OpenCV and NumPy

fishington.io-bot fishington.io bot with using OpenCV and NumPy bot can continue to fishing fully automatically how to use Open cmd in fishington.io-b

Bahadır Araz 77 Jan 02, 2023
virtual mouse which can copy files, close tabs and many other features !

AI Virtual Mouse Controller Developed an AI-based system to control the mouse cursor using Python and OpenCV with the real-time camera. Fingertip loca

Diwas Pandey 23 Oct 05, 2021
Detect text blocks and OCR poorly scanned PDFs in bulk. Python module available via pip.

doc2text doc2text extracts higher quality text by fixing common scan errors Developing text corpora can be a massive pain in the butt. Much of the tex

Joe Sutherland 1.3k Jan 04, 2023
Opencv-image-filters - A camera to capture videos in real time by placing filters using Python with the help of the Tkinter and OpenCV libraries

Opencv-image-filters - A camera to capture videos in real time by placing filters using Python with the help of the Tkinter and OpenCV libraries

Sergio Díaz Fernández 1 Jan 13, 2022
Awesome Spectral Indices in Python.

Awesome Spectral Indices in Python: Numpy | Pandas | GeoPandas | Xarray | Earth Engine | Planetary Computer | Dask GitHub: https://github.com/davemlz/

David Montero Loaiza 98 Jan 02, 2023
Face_mosaic - Mosaic blur processing is applied to multiple faces appearing in the video

動機 face_recognitionを使用して得られる顔座標は長方形であり、この座標をそのまま用いてぼかし処理を行った場合得られる画像は醜い。 それに対してモ

Yoshitsugu Kesamaru 6 Feb 03, 2022
Comparison-of-OCR (KerasOCR, PyTesseract,EasyOCR)

Optical Character Recognition OCR (Optical Character Recognition) is a technology that enables the conversion of document types such as scanned paper

21 Dec 25, 2022
Erosion and dialation using structure element in OpenCV python

Erosion and dialation using structure element in OpenCV python

Tamzid hasan 2 Nov 11, 2021
Omdena-abuja-anpd - Automatic Number Plate Detection for the security of lives and properties using Computer Vision.

Omdena-abuja-anpd - Automatic Number Plate Detection for the security of lives and properties using Computer Vision.

Abdulazeez Jimoh 1 Jan 01, 2022
This is a GUI for scrapping PDFs with the help of optical character recognition making easier than ever to scrape PDFs.

pdf-scraper-with-ocr With this tool I am aiming to facilitate the work of those who need to scrape PDFs either by hand or using tools that doesn't imp

Jacobo José Guijarro Villalba 75 Oct 21, 2022