A curated list of papers, code and resources pertaining to image composition

Overview

Awesome Image Composition Awesome

A curated list of resources including papers, datasets, and relevant links pertaining to image composition.

Contributing

Contributions are welcome. If you wish to contribute, feel free to send a pull request. If you have suggestions for new sections to be included, please raise an issue and discuss before sending a pull request.

Table of Contents

Surveys

  • Li Niu, Wenyan Cong, Liu Liu, Yan Hong, Bo Zhang, Jing Liang, Liqing Zhang: "Making Images Real Again: A Comprehensive Survey on Deep Image Composition." arXiv preprint arXiv:2106.14490 (2021). [arXiv]

Papers

Image blending

  • Huikai Wu, Shuai Zheng, Junge Zhang, Kaiqi Huang: "GP-GAN: Towards Realistic High-Resolution Image Blending." ACM MM (2019) [arXiv] [code]
  • Lingzhi Zhang, Tarmily Wen, Jianbo Shi: "Deep Image Blending." WACV (2020) [pdf] [arXiv] [code]

Image harmonization

  • Jun Ling, Han Xue, Li Song, Rong Xie, Xiao Gu: "Region-Aware Adaptive Instance Normalization for Image Harmonization." CVPR (2021) [pdf] [supp] [arXiv] [code].
  • Zonghui Guo, Haiyong Zheng, Yufeng Jiang, Zhaorui Gu, Bing Zheng: "Intrinsic Image Harmonization." CVPR (2021) [pdf] [supp] [code].
  • Wenyan Cong, Li Niu, Jianfu Zhang, Jing Liang, Liqing Zhang: "BargainNet: Background-Guided Domain Translation for Image Harmonization." ICME (2021) [arXiv] [code].
  • Konstantin Sofiiuk, Polina Popenova, Anton Konushin: "Foreground-aware Semantic Representations for Image Harmonization." WACV (2021) [pdf] [supp] [arXiv] [code]
  • Guoqing Hao, Satoshi Iizuka, Kazuhiro Fukui: "Image Harmonization with Attention-based Deep Feature Modulation." BMVC (2020) [pdf] [supp] [code]
  • Wenyan Cong, Jianfu Zhang, Li Niu, Liu Liu, Zhixin Ling, Weiyuan Li, Liqing Zhang: "DoveNet: Deep Image Harmonization via Domain Verification." CVPR (2020) [pdf] [supp] [arXiv] [code].
  • Xiaodong Cun, Chi-Man Pun: "Improving the Harmony of the Composite Image by Spatial-Separated Attention Module." IEEE Trans. Image Process. 29: 4759-4771 (2020) [pdf] [arXiv] [code]
  • Yi-Hsuan Tsai, Xiaohui Shen, Zhe Lin, Kalyan Sunkavalli, Xin Lu, Ming-Hsuan Yang: "Deep Image Harmonization." CVPR (2017) [pdf] [supp] [arXiv] [code]

Shadow generation

  • Daquan Liu, Chengjiang Long, Hongpan Zhang, Hanning Yu, Xinzhi Dong, Chunxia Xiao: "ARshadowGAN: Shadow generative adversarial network for augmented reality in single light scenes." CVPR (2020) [pdf] [code].

  • Shuyang Zhang, Runze Liang, Miao Wang: "ShadowGAN: Shadow synthesis for virtual objects with conditional adversarial networks." Computational Visual Media (2019) [pdf].

  • Fangneng Zhan, Shijian Lu, Changgong Zhang, Feiying Ma, Xuansong Xie: "Adversarial Image Composition with Auxiliary Illumination." ACCV (2020) [pdf].

Object placement and spatial transformation

  • Lingzhi Zhang, Tarmily Wen, Jie Min, Jiancong Wang, David Han, Jianbo Shi: "Learning Object Placement by Inpainting for Compositional Data Augmentation" ECCV (2020) [pdf]

  • Samaneh Azadi, Deepak Pathak, Sayna Ebrahimi, Trevor Darrell: "Compositional GAN: Learning Image-Conditional Binary Composition" International Journal of Computer Vision (2020) [arXiv] [code]

  • Song-Hai Zhang, Zhengping Zhou, Bin Liu, Xi Dong, Peter Hall: "What and Where: A Context-based Recommendation System for Object Insertion" Computational Visual Media (2020) [arXiv]

  • Shashank Tripathi, Siddhartha Chandra, Amit Agrawal, Ambrish Tyagi, James M. Rehg, Visesh Chari: "Learning to Generate Synthetic Data via Compositing" CVPR (2019) [arXiv]

  • Haoshu Fang, Jianhua Sun, Runzhong Wang, Minghao Gou, Yonglu Li, Cewu Lu: "InstaBoost: Boosting Instance Segmentation via Probability Map Guided Copy-Pasting" ICCV (2019) [arXiv] [code]

  • Chen-Hsuan Lin, Ersin Yumer, Oliver Wang, Eli Shechtman, Simon Lucey: "ST-GAN: Spatial Transformer Generative Adversarial Networks for Image Compositing" CVPR (2018) [arXiv] [code]

  • Donghoon Lee, Sifei Liu, Jinwei Gu, Ming-Yu Liu, Ming-Hsuan Yang, Jan Kautz: "Context-Aware Synthesis and Placement of Object Instances" NeurIPS (2018) [arXiv] [code]

  • Fuwen Tan, Crispin Bernier, Benjamin Cohen, Vicente Ordonez, Connelly Barnes: "Where and Who? Automatic Semantic-Aware Person Composition" WACV (2018) [arXiv][code]

  • Tal Remez, Jonathan Huang, Matthew Brown: "learning to segment via cut-and-paste" ECCV (2018) [arXiv] [code]

Occlusion

  • Samaneh Azadi, Deepak Pathak, Sayna Ebrahimi, Trevor Darrell: "Compositional GAN: Learning Image-Conditional Binary Composition." IJCV (2020) [arXiv] [code]
  • Fangneng Zhan, Jiaxing Huang, Shijian Lu, "Hierarchy Composition GAN for High-fidelity Image Synthesis." Transactions on cybernetics (2021) [arXiv]

Datasets

  • iHarmony4 (image harmonization): It contains four subdatasets: HCOCO, HAdobe5k, HFlickr, Hday2night, with a total of 73,146 pairs of unharmonized images and harmonized images. [pdf] [link]
  • GMSDataset (image harmonization): It contains 183 images with image resolution of 1940*1440. It consists of 16 different objects and for each object, one source image and 11 target images in different background scenes and illumination conditions are captured. [pdf] [link] (access code: ekn2)
  • HVIDIT (image harmonization): A dataset built upon VIDIT (Virtual Image Dataset for Illumination Transfer) dataset for image harmonization. It contains 3007 images of 276 scenes for training and 329 images of 24 scenes for testing. [pdf] [link]
  • RHHarmony (image harmonization): A rendered image harmonization dataset, which contains 15000 ground-truth rendered images and has the potential to generate 135000 composite rendered images. [pdf] [link]
  • Shadow-AR (shadow generation): It contains 3,000 quintuples, Each quintuple consists of 5 images 640×480 resolution: a synthetic image without the virtual object shadow and its corresponding image containing the virtual object shadow, a mask of the virtual object, a labeled real-world shadow matting and its corresponding labeled occluder. [pdf] [link]
  • DESOBA (shadow generation): It contains 840 training images with totally 2,999 object-shadow pairs and 160 test images with totally 624 object-shadow pairs. [pdf] [link]
  • OPA (object placement): It contains 62,074 training images and 11,396 test images, in which the foregrounds/backgrounds in training set and test set have no overlap. The training (resp., test) set contains 21,351 (resp.,3,566) positive samples and 40,724 (resp., 7,830) negative samples. [pdf] [link]

Other resources

Owner
BCMI
Center for Brain-Like Computing and Machine Intelligence, Shanghai Jiao Tong University.
BCMI
Official implementation of "An Image is Worth 16x16 Words, What is a Video Worth?" (2021 paper)

An Image is Worth 16x16 Words, What is a Video Worth? paper Official PyTorch Implementation Gilad Sharir, Asaf Noy, Lihi Zelnik-Manor DAMO Academy, Al

213 Nov 12, 2022
Augmenting Anchors by the Detector Itself

Augmenting Anchors by the Detector Itself Introduction It is difficult to determine the scale and aspect ratio of anchors for anchor-based object dete

4 Nov 06, 2022
Smart computer vision application

Smart-computer-vision-application Backend : opencv and python Library required:

2 Jan 31, 2022
Memory tests solver with using OpenCV

Human Benchmark project This project is OpenCV based programs which are puzzle solvers for 7 different games for https://humanbenchmark.com/. made as

Bahadır Araz 24 Dec 27, 2022
Virtual Zoom Gesture using OpenCV

Virtual_Zoom_Gesture I have created a virtual zoom gesture where we can Zoom in and Zoom out any image and even we can move that image anywhere on the

Mudit Sinha 2 Dec 26, 2021
Aloception is a set of package for computer vision: aloscene, alodataset, alonet.

Aloception is a set of package for computer vision: aloscene, alodataset, alonet.

Visual Behavior 86 Dec 28, 2022
Library used to deskew a scanned document

Deskew //Note: Skew is measured in degrees. Deskewing is a process whereby skew is removed by rotating an image by the same amount as its skew but in

Stéphane Brunner 273 Jan 06, 2023
Single Shot Text Detector with Regional Attention

Single Shot Text Detector with Regional Attention Introduction SSTD is initially described in our ICCV 2017 spotlight paper. A third-party implementat

Pan He 215 Dec 07, 2022
MeshToGeotiff - A fast Python algorithm to convert a 3D mesh into a GeoTIFF

MeshToGeotiff - A fast Python algorithm to convert a 3D mesh into a GeoTIFF Python class for converting (very fast) 3D Meshes/Surfaces to Raster DEMs

8 Sep 10, 2022
graph learning code for ogb

The final code for OGB Installation Requirements: ogb=1.3.1 torch=1.7.0 torch-geometric=1.7.0 torch-scatter=2.0.6 torch-sparse=0.6.9 Baseline models T

PierreHao 20 Nov 10, 2022
CNN+Attention+Seq2Seq

Attention_OCR CNN+Attention+Seq2Seq The model and its tensor transformation are shown in the figure below It is necessary ch_ train and ch_ test the p

Tsukinousag1 2 Jul 14, 2022
Python bindings for JIGSAW: a Delaunay-based unstructured mesh generator.

JIGSAW: An unstructured mesh generator JIGSAW is an unstructured mesh generator and tessellation library; designed to generate high-quality triangulat

Darren Engwirda 26 Dec 13, 2022
Awesome multilingual OCR toolkits based on PaddlePaddle (practical ultra lightweight OCR system, provide data annotation and synthesis tools, support training and deployment among server, mobile, embedded and IoT devices)

English | 简体中文 Introduction PaddleOCR aims to create multilingual, awesome, leading, and practical OCR tools that help users train better models and a

27.5k Jan 08, 2023
Document blur detection based on Laplacian operator and text detection.

Document Blur Detection For general blurred image, using the variance of Laplacian operator is a good solution. But as for the blur detection of docum

JoeyLr 5 Oct 20, 2022
This is a passport scanning web service to help you scan, identify and validate your passport created with a simple and flexible design and ready to be integrated right into your system!

Passport-Recogniton-System This is a passport scanning web service to help you scan, identify and validate your passport created with a simple and fle

Mo'men Ashraf Muhamed 7 Jan 04, 2023
Shape Detection - It's a shape detection project with OpenCV and Python.

Shape Detection It's a shape detection project with OpenCV and Python. Setup pip install opencv-python for doing AI things. pip install simpleaudio fo

1 Nov 26, 2022
([email protected]) Boosting Co-teaching with Compression Regularization for Label Noise

Nested-Co-teaching ([email protected]) Pytorch implementation of paper "Boosting Co-tea

YINGYI CHEN 41 Jan 03, 2023
Image augmentation library in Python for machine learning.

Augmentor is an image augmentation library in Python for machine learning. It aims to be a standalone library that is platform and framework independe

Marcus D. Bloice 4.8k Jan 04, 2023
This is used to convert a string to an Image with Handwritten Characters.

Text-to-Handwriting-using-python This is used to convert a string to an Image with Handwritten Characters. text_to_handwriting(string: str, save_to: s

Akashdeep Mahata 3 Aug 15, 2022
An expandable and scalable OCR pipeline

Overview Nidaba is the central controller for the entire OGL OCR pipeline. It oversees and automates the process of converting raw images into citable

81 Jan 04, 2023