This repository contains the code for the paper "SCANimate: Weakly Supervised Learning of Skinned Clothed Avatar Networks"

Overview

SCANimate: Weakly Supervised Learning of Skinned Clothed Avatar Networks (CVPR 2021 Oral)

Paper

This repository contains the official PyTorch implementation of:

SCANimate: Weakly Supervised Learning of Skinned Clothed Avatar Networks

Full paper | 5min Presentation | Video | Project website | Poster

Installation

Please follow the instructions in ./installation.txt to install the environment and the SMPL model.

Run SCANimate

0. Activate the environment if it is not already activated:

$ source ./venv/scanimate/bin/activate

1. First download the pretrained model, some motion sequences and other files for the demo

  • Download an AIST++ dance motion sequence for test (CC BY 4.0 license):
$ . ./download_aist_demo_motion.sh

​ This script will create a data folder under current directory, please make sure to put it under the SCANimate directory.

  • Download pre-trained scanimats for animation test: Please visit https://scanimate.is.tue.mpg.de/download.php, register, login, read and agree to the license and then download some demo scanimats. Unzip the zip file into ./data directory

  • Download subset of CAPE data for training demo: Please visit https://scanimate.is.tue.mpg.de/download.php, register, login, read and agree to the license and then download the data for training demo. Unzip the zip file into ./data directory.

  • Now you should have a ./data directory under SCANimate. Within ./data you will have 5 directories: minimal_body, pretrained, pretrained_configs, test, and train.

Run animation demos:

2. Now you can run the test demo with the following command:

$ python -m apps.test_scanimate -c ./data/pretrained_configs/release_03223_shortlong.yaml -t ./data/test/gLO_sBM_cAll_d14_mLO1_ch05
  • You can replace the configuration file with other files under ./data/pretrained_configs/ to try other subjects.
  • You can also replace the test motions with others under ./data/test.
  • The result will be generated under ./demo_result/results_test.

3. The generated mesh sequences can be rendered with the code under ./demo_result:

First, install Open3D (for rendering the results) by:

$ pip install open3d==0.12.0

Then run:

$ python render/render_aist.py -i demo_result/results_test/release_03223_shortlong_test_gLO_sBM_cAll_d14_mLO1_ch05/ -o demo_result

Run training demo

2. Now you can run the demo training with

$ python -m apps.train_scanimate -c ./configs/example.yaml

The results can be found under ./demo_result/results/example.

3. Train on your own data Make your data the same structure as in the ./data/train/example_03375_shortlong, where a .ply file contains a T-pose SMPL body mesh and a folder containing training frames. Each frame corresponds to two files: one .npz files containing SMPL parameters that describes the body and one .ply file containing the clothed scan. The body should align with the scan. Then, change the ./configs/example.yaml to point to your data directory and you are good to go!

Citations

If you find our code or paper useful to your research, please consider citing:

@inproceedings{Saito:CVPR:2021,
  title = {{SCANimate}: Weakly Supervised Learning of Skinned Clothed Avatar Networks},
  author = {Saito, Shunsuke and Yang, Jinlong and Ma, Qianli and Black, Michael J.},
  booktitle = {Proceedings IEEE/CVF Conf.~on Computer Vision and Pattern Recognition (CVPR)},
  month = jun,
  year = {2021},
  month_numeric = {6}}
A curated list of awesome synthetic data for text location and recognition

awesome-SynthText A curated list of awesome synthetic data for text location and recognition and OCR datasets. Text location SynthText SynthText_Chine

Tianzhong 283 Jan 05, 2023
Primary QPDF source code and documentation

QPDF QPDF is a command-line tool and C++ library that performs content-preserving transformations on PDF files. It supports linearization, encryption,

QPDF 2.2k Jan 04, 2023
利用Paddle框架复现CRAFT

CRAFT-Paddle 利用Paddle框架复现CRAFT CRAFT 本项目基于paddlepaddle框架复现CRAFT,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: CRAFT: Character-Region Awarenes

QuanHao Guo 2 Mar 07, 2022
Motion Detection Squid Game with OpenCV Python

*Motion Detection Squid Game with OpenCV Python i am newbie in python. In this project I made a simple game to follow the trend about the red light gr

Nayan 17 Nov 22, 2022
基于openpose和图像分类的手语识别项目

手语识别 0、使用到的模型 (1). openpose,作者:CMU-Perceptual-Computing-Lab https://github.com/CMU-Perceptual-Computing-Lab/openpose (2). 图像分类classification,作者:Bubbl

20 Dec 15, 2022
The code for “Oriented RepPoints for Aerail Object Detection”

Oriented RepPoints for Aerial Object Detection The code for the implementation of “Oriented RepPoints”, Under review. (arXiv preprint) Introduction Or

WentongLi 207 Dec 24, 2022
ERQA - Edge Restoration Quality Assessment

ERQA - a full-reference quality metric designed to analyze how good image and video restoration methods (SR, deblurring, denoising, etc) are restoring real details.

MSU Video Group 27 Dec 17, 2022
This repository lets you train neural networks models for performing end-to-end full-page handwriting recognition using the Apache MXNet deep learning frameworks on the IAM Dataset.

Handwritten Text Recognition (OCR) with MXNet Gluon These notebooks have been created by Jonathan Chung, as part of his internship as Applied Scientis

Amazon Web Services - Labs 422 Jan 03, 2023
Code for CVPR 2022 paper "Bailando: 3D dance generation via Actor-Critic GPT with Choreographic Memory"

Bailando Code for CVPR 2022 (oral) paper "Bailando: 3D dance generation via Actor-Critic GPT with Choreographic Memory" [Paper] | [Project Page] | [Vi

Li Siyao 237 Dec 29, 2022
InverseRenderNet: Learning single image inverse rendering, CVPR 2019.

InverseRenderNet: Learning single image inverse rendering !! Check out our new work InverseRenderNet++ paper and code, which improves the inverse rend

Ye Yu 141 Dec 20, 2022
Responsive Doc. scanner using U^2-Net, Textcleaner and Tesseract

Responsive Doc. scanner using U^2-Net, Textcleaner and Tesseract Toolset U^2-Net is used for background removal Textcleaner is used for image cleaning

3 Jul 13, 2022
This Repository contain Opencv Projects in python

Python-Opencv OpenCV OpenCV (Open Source Computer Vision Library) is an open source computer vision and machine learning software library. OpenCV was

Yash Sakre 2 Nov 06, 2021
Computer vision applications project (Flask and OpenCV)

Computer Vision Applications Project This project is at it's initial phase. This is all about the implementation of different computer vision techniqu

Suryam Thapa 1 Jan 26, 2022
Using python libraries to track hands

Python-HandTracking Using python libraries to track hands on a camera Uses cv2 and mediapipe libraries custom hand tracking module PyCharm IDE Final E

Martin Matsudaira 1 Dec 17, 2021
Generate text images for training deep learning ocr model

New version release:https://github.com/oh-my-ocr/text_renderer Text Renderer Generate text images for training deep learning OCR model (e.g. CRNN). Su

Qing 1.2k Jan 04, 2023
document image degradation

ocrodeg The ocrodeg package is a small Python library implementing document image degradation for data augmentation for handwriting recognition and OC

NVIDIA Research Projects 134 Nov 18, 2022
Learning Camera Localization via Dense Scene Matching, CVPR2021

This repository contains code of our CVPR 2021 paper - "Learning Camera Localization via Dense Scene Matching" by Shitao Tang, Chengzhou Tang, Rui Hua

tangshitao 65 Dec 01, 2022
The open source extract transaction infomation by using OCR.

Transaction OCR Mã nguồn trích xuất thông tin transaction từ file scaned pdf, ở đây tôi lựa chọn tài liệu sao kê công khai của Thuy Tien. Mã nguồn có

Nguyen Xuan Hung 18 Jun 02, 2022
Aloception is a set of package for computer vision: aloscene, alodataset, alonet.

Aloception is a set of package for computer vision: aloscene, alodataset, alonet.

Visual Behavior 86 Dec 28, 2022
A little but useful tool to explore OCR data extracted with `pytesseract` and `opencv`

Screenshot OCR Tool Extracting data from screen time screenshots in iOS and Android. We are exploring 3 options: Simple OCR with no text position usin

Gabriele Marini 1 Dec 07, 2021