Generating interfaces(CLI, Qt GUI, Dash web app) from a Python function.

Overview

oneFace is a Python library for automatically generating multiple interfaces(CLI, GUI, WebGUI) from a callable Python object.

Build Status codecov Documentation Install with PyPi

oneFace is an easy way to create interfaces in Python, just decorate your function and mark the type and range of the arguments:

from oneface import one, Arg

@one
def bmi(name: Arg(str),
        height: Arg(float, [100, 250]) = 160,
        weight: Arg(float, [0, 300]) = 50.0):
    BMI = weight / (height / 100) ** 2
    print(f"Hi {name}. Your BMI is: {BMI}")
    return BMI


# run cli
bmi.cli()
# or run qt_gui
bmi.qt_gui()
# or run dash web app
bmi.dash_app()

These code will generate the following interfaces:

CLI Qt Dash
CLI Qt Dash

Features

  • Generate CLI, Qt GUI, Dash Web app from a python function.
  • Automatically check the type and range of input parameters and pretty print them.
  • Easy extension of parameter types and GUI widgets.

Detail usage see the documentation and pythondig.

Installation

To install oneFace with complete dependency:

$ pip install oneface[all]

Or install with just qt or dash dependency:

$ pip install oneface[qt]  # qt
$ pip install oneface[dash]  # dash
Comments
  • Wrap CLI

    Wrap CLI

    Wrap a CLI program to a GUI/Web interface app.

    Using a .yaml as config to specify the arguments:

    # open_browser_oneface.yaml
    name: open_browser
    
    command: python -m webbrowser {is_tab} {url} 
    
    arguments:
    
      is_tab:
        type: bool
        true_content: "-t"
        false_content: ""
    
      url:
        type: str
    

    Launch the app with:

    $ python -m onface.wrap_cli run open_browser_oneface.yaml qt_gui
    

    It will get a GUI app.

    enhancement 
    opened by Nanguage 1
  • A Thanks Message

    A Thanks Message

    Hello, i am Onur, i am a CTO of a community that develop Blockchain based Decentralized Application Network. This repository have a very good idea. All contributor of this project and me should develop this project and use in the other project. Let's not stop developing.

    Onur Atakan ULUSOY - CTO of Decentra Network Community

    opened by onuratakan 1
  • Implicit Arg convert from Python builtin types

    Implicit Arg convert from Python builtin types

    Allow type annotation with python builtin types, for example:

    from oneface import one, Arg
    
    @one
    def bmi(name: str,
            height: (float, [100, 250]) = 160,
            weight: (float, [0, 300]) = 50.0):
        BMI = weight / (height / 100) ** 2
        print(f"Hi {name}. Your BMI is: {BMI}")
        return BMI
    
    # run cli
    bmi.cli()
    

    Let the annotation automatically convert to Arg when parse the parameters.

    enhancement 
    opened by Nanguage 1
  • Integrate generated qt window to a Qt app.

    Integrate generated qt window to a Qt app.

    import sys
    from oneface.qt import qt_window
    from oneface import one
    from qtpy import QtWidgets
    
    app = QtWidgets.QApplication([])
    
    
    @qt_window
    @one
    def add(a: int, b: int):
        return a + b
    
    @qt_window
    @one
    def mul(a: int, b: int):
        return a * b
    
    
    main_window = QtWidgets.QWidget()
    main_window.setWindowTitle("MyApp")
    main_window.setFixedSize(200, 100)
    layout = QtWidgets.QVBoxLayout(main_window)
    layout.addWidget(QtWidgets.QLabel("Apps:"))
    btn_open_add = QtWidgets.QPushButton("add")
    btn_open_mul = QtWidgets.QPushButton("mul")
    btn_open_add.clicked.connect(add.show)
    btn_open_mul.clicked.connect(mul.show)
    layout.addWidget(btn_open_add)
    layout.addWidget(btn_open_mul)
    main_window.show()
    
    sys.exit(app.exec())
    
    enhancement 
    opened by Nanguage 0
  • Dash: the 'plotly' result_result_type

    Dash: the 'plotly' result_result_type

    Allow render the result with ploty. The wraped function return a plotly figure object:

    from oneface import one, Arg
    import plotly.express as px
    import numpy as np
    
    @one
    def draw_random_points(n: Arg[int, [1, 10000]] = 100):
        x, y = np.random.random(n), np.random.random(n)
        fig = px.scatter(x=x, y=y)
        return fig
    
    draw_random_points.dash_app(
        result_show_type='plotly',
        debug=True)
    
    enhancement 
    opened by Nanguage 0
  • Flask integration of dash app

    Flask integration of dash app

    Embeding the generated dash app as a route of flask server.

    # demo_flask_integrate.py
    from flask import Flask
    from oneface.dash_app import flask_route
    from oneface.core import one
    
    server = Flask("test_dash_app")
    
    @flask_route(server, "/add")
    @one
    def add(a: int, b: int) -> int:
        return a + b
    
    @flask_route(server, "/mul")
    @one
    def mul(a: int, b: int) -> int:
        return a * b
    
    server.run("127.0.0.1", 8088)
    

    Run this will launch a flask server support run multiple dash app from different route.

    References:

    • https://blog.finxter.com/dash-flask/
    enhancement 
    opened by Nanguage 0
  • Define custom dash commpont to support complex input type.

    Define custom dash commpont to support complex input type.

    For example:

    from oneface import one, Arg
    from oneface.dash_app import App, InputItem
    from dash import dcc, html
    
    class Person:
        def __init__(self, name, age):
            self.name = name
            self.age = age
    
    
    def check_person_type(val, tp):
        return (
            isinstance(val, tp) and
            isinstance(val.name, str) and
            isinstance(val.age, int)
        )
    
    Arg.register_type_check(Person, check_person_type)
    Arg.register_range_check(Person, lambda val, range: range[0] <= val.age <= range[1])
    
    class PersonInputItem(InputItem):
        def get_input(self):
            if self.default:
                default_val = f"Person('{self.default.name}', {self.default.age})"
            else:
                default_val = ""
            return dcc.Input(
                placeholder="example: Person('age', 20)",
                type="text",
                value=default_val,
                style={
                    "width": "100%",
                    "height": "40px",
                    "margin": "5px",
                    "font-size": "20px",
                }
            )
    
    
    App.register_widget(Person, PersonInputItem)
    App.register_type_convert(Person, lambda s: eval(s))
    
    
    @one
    def print_person(person: Arg(Person, [0, 100]) = Person("Tom", 10)):
        print(f"{person.name} is {person.age} years old.")
    
    
    print_person.dash_app()
    
    

    This code using the serialized input Person, how to define a "Composite components" in dash to support Person input? Just like in Qt:

    image

    question 
    opened by Nanguage 0
Releases(0.1.9)
An interactive GUI for WhiteboxTools in a Jupyter-based environment

whiteboxgui An interactive GUI for WhiteboxTools in a Jupyter-based environment GitHub repo: https://github.com/giswqs/whiteboxgui Documentation: http

Qiusheng Wu 105 Dec 15, 2022
A Simple Flask-Plotly Example for NTU 110-1 DSSI Class

A Simple Flask-Plotly Example for NTU 110-1 DSSI Class Live Demo Prerequisites We will use Flask and Ploty to build a Flask application. If you haven'

Ting Ni Wu 1 Dec 11, 2021
An open-source tool for visual and modular block programing in python

PyFlow PyFlow is an open-source tool for modular visual programing in python ! Although for now the tool is in Beta and features are coming in bit by

1.1k Jan 06, 2023
Some problems of SSLC ( High School ) before outputs and after outputs

Some problems of SSLC ( High School ) before outputs and after outputs 1] A Python program and its output (output1) while running the program is given

Fayas Noushad 3 Dec 01, 2021
Visualize the bitcoin blockchain from your local node

Project Overview A new feature in Bitcoin Core 0.20 allows users to dump the state of the blockchain (the UTXO set) using the command dumptxoutset. I'

18 Sep 11, 2022
`charts.css.py` brings `charts.css` to Python. Online documentation and samples is available at the link below.

charts.css.py charts.css.py provides a python API to convert your 2-dimension data lists into html snippet, which will be rendered into charts by CSS,

Ray Luo 3 Sep 23, 2021
Cryptocurrency Centralized Exchange Visualization

This is a simple one that uses Grafina to visualize cryptocurrency from the Bitkub exchange. This service will make a request to the Bitkub API from your wallet and save the response to Postgresql. G

Popboon Mahachanawong 1 Nov 24, 2021
A python script and steps to display locations of peers connected to qbittorrent

A python script (along with instructions) to display the locations of all the peers your qBittorrent client is connected to in a Grafana worldmap dash

62 Dec 07, 2022
Schema validation for Xarray objects

xarray-schema Schema validation for Xarray installation This package is in the early stages of development. Install it from source: pip install git+gi

carbonplan 22 Oct 31, 2022
D-Analyst : High Performance Visualization Tool

D-Analyst : High Performance Visualization Tool D-Analyst is a high performance data visualization built with python and based on OpenGL. It allows to

4 Apr 14, 2022
Data aggregated from the reports found at the MCPS COVID Dashboard into a set of visualizations.

Montgomery County Public Schools COVID-19 Visualizer Contents About this project Data Support this project About this project Data All data we use can

James 3 Jan 19, 2022
A Jupyter - Leaflet.js bridge

ipyleaflet A Jupyter / Leaflet bridge enabling interactive maps in the Jupyter notebook. Usage Selecting a basemap for a leaflet map: Loading a geojso

Jupyter Widgets 1.3k Dec 27, 2022
Realtime Web Apps and Dashboards for Python and R

H2O Wave Realtime Web Apps and Dashboards for Python and R New! R Language API Build and control Wave dashboards using R! New! Easily integrate AI/ML

H2O.ai 3.4k Jan 06, 2023
High performance, editable, stylable datagrids in jupyter and jupyterlab

An ipywidgets wrapper of regular-table for Jupyter. Examples Two Billion Rows Notebook Click Events Notebook Edit Events Notebook Styling Notebook Pan

J.P. Morgan Chase 75 Dec 15, 2022
A Jupyter - Three.js bridge

pythreejs A Python / ThreeJS bridge utilizing the Jupyter widget infrastructure. Getting Started Installation Using pip: pip install pythreejs And the

Jupyter Widgets 844 Dec 27, 2022
Scientific measurement library for instruments, experiments, and live-plotting

PyMeasure scientific package PyMeasure makes scientific measurements easy to set up and run. The package contains a repository of instrument classes a

PyMeasure 445 Jan 04, 2023
Dimensionality reduction in very large datasets using Siamese Networks

ivis Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets. Ivis

beringresearch 284 Jan 01, 2023
Python library that makes it easy for data scientists to create charts.

Chartify Chartify is a Python library that makes it easy for data scientists to create charts. Why use Chartify? Consistent input data format: Spend l

Spotify 3.2k Jan 01, 2023
plotly scatterplots which show molecule images on hover!

molplotly Plotly scatterplots which show molecule images on hovering over the datapoints! Required packages: pandas rdkit jupyter_dash ➡️ See example.

150 Dec 28, 2022
GitHub Stats Visualizations : Transparent

GitHub Stats Visualizations : Transparent Generate visualizations of GitHub user and repository statistics using GitHub Actions. ⚠️ Disclaimer The pro

YuanYap 7 Apr 05, 2022