Nateve compiler developed with python.

Overview

Adam

Adam is a Nateve Programming Language compiler developed using Python.

Nateve

Nateve is a new general domain programming language open source inspired by languages like Python, C++, JavaScript, and Wolfram Mathematica.

Nateve is an compiled language. Its first compiler, Adam, is fully built using Python 3.8.

Options of command line (Nateve)

  1. build: Transpile Nateve source code to Python 3.8
  2. run: Run Nateve source code
  3. compile: Compile Nateve source code to an executable file (.exe)
  4. run-init-loop: Run Nateve source code with an initial source and a loop source
  5. set-time-unit: Set Adam time unit to seconds or miliseconds (default: milisecond)
  6. -v: Activate verbose mode

Nateve Tutorial

In this tutorial, we will learn how to use Nateve step by step.

Step 1: Create a new Nateve project

$ cd my-project
$ COPY CON main.nateve

Hello World program

print("Hello, World!")

Is prime? program

def is_prime(n) {
    if n == 1 {
        return False
    }
    for i in range(2, n) {
        if n % i == 0 {
            return False
        }
    }
    return True
}

n = intput("Enter a number: ")

if is_prime(n) {
    print("It is a prime number.")
}
else {
    print("It is not a prime number.")
}

Comments

If you want to comment your code, you can use:

~ This is a single line comment ~

~
    And this a multiline comment
~

Under construction...

Let Statements

This language does not use variables. Instead of variables, you can only declare static values.

For declaring a value, you must use let and give it a value. For example:

let a = 1        -- Interger
let b = 1.0      -- Float
let c = "string" -- String
let d = true     -- Boolean
let e = [1,2,3]  -- List
let f = (1,2)    -- Tuple
...             

SigmaF allows data type as Integer, Float, Boolean, and String.

Lists

The Lists allow to use all the data types before mentioned, as well as lists and functions.

Also, they allow to get an item through the next notation:

let value_list = [1,2,3,4,5,6,7,8,9]
value_list[0]       -- Output: 1
value_list[0, 4]    -- Output: [1,2,3,4]
value_list[0, 8, 2] -- Output: [1, 3, 5, 7]

The struct of List CAll is example_list[<Start>, <End>, <Jump>]

Tuples

The tuples are data structs of length greater than 1. Unlike lists, they allow the following operations:

(1,2) + (3,4)      -- Output: (4,6)
(4,6,8) - (3,4,5)  -- Output: (1,2,3)
(0,1) == (0,1)     -- Output: true
(0,1) != (1,3)     -- Output: true

To obtain the values of a tuple, you must use the same notation of the list. But this data structure does not allow ranges like the lists (only you can get one position of a tuple).

E.g.

let t = (1,2,3,4,5,6)
t[1] -- Output: 2
t[5] -- Output: 6

And so on.

Operators

Warning: SigmaF have Static Typing, so it does not allow the operation between different data types.

These are operators:

Operator Symbol
Plus +
Minus -
Multiplication *
Division /
Modulus %
Exponential **
Equal ==
Not Equal !=
Less than <
Greater than >
Less or equal than <=
Greater or equal than >=
And &&
Or ||

The operator of negation for Boolean was not included. You can use the not() function in order to do this.

Functions

For declaring a function, you have to use the next syntax:

let example_function = fn <Name Argument>::<Argument Type> -> <Output Type> {
    => <Return Value>
}  

(For return, you have to use the => symbol)

For example:

let is_prime_number = fn x::int, i::int -> bool {
    if x <= 1 then {=> false;}
    if x == i then {=> true;}
    if (x % i) == 0 then {=> false;}
    => is_prime_number(x, i+1);
}

printLn(is_prime_number(11, 2)) -- Output: true

Conditionals

Regarding the conditionals, the syntax structure is:

if <Condition> then {
    <Consequence>
}
else{
    <Other Consequence>
}

For example:

if x <= 1 || x % i == 0 then {
    false;
}
if x == i then {
    true;
}
else {
    false;
}

Some Examples

-- Quick Sort
let qsort = fn l::list -> list {

	if (l == []) then {=> [];}
	else {
		let p = l[0];
		let xs = tail(l);
		
		let c_lesser = fn q::int -> bool {=> (q < p)}
		let c_greater = fn q::int -> bool {=> (q >= p)}

		=> qsort(filter(c_lesser, xs)) + [p] + qsort(filter(c_greater, xs));
	}
}

-- Filter
let filter = fn c::function, l::list -> list {
	if (l == []) then {=> [];} 

    => if (c(l[0])) then {[l[0]]} else {[]} +  filter(c, tail(l));
}

-- Map
let map = fn f::function, l::list -> list {
	if (l==[]) then {=> [];}
	
	=> [f(l[0])] + map(f, tail(l));
}

To know other examples of the implementations, you can go to e.g.


Feedback

I would really appreciatte your feedback. You can submit a new issue, or reach out me on Twitter.

Contribute

This is an opensource project, everyone can contribute and become a member of the community of SigmaF.

Why be a member of the SigmaF community?

1. A simple and understandable code

The source code of the interpreter is made with Python 3.8, a language easy to learn, also good practices are a priority for this project.

2. A great potencial

This project has a great potential to be the next programming language of the functional paradigm, to development the AI, and to development new metaheuristics.

3. Scalable development

One of the mains approaches of this project is the implementation of TDD from the beggining and the development of new features, which allows scalability.

4. Simple and power

One of the main purposes of this programming language is to create an easy-to-learn functional language, which at the same time is capable of processing large amounts of data safely and allows concurrence and parallelism.

5. Respect for diversity

Everybody is welcome, it does not matter your genre, experience or nationality. Anyone with enthusiasm can be part of this project. Anyone from the most expert to the that is beginning to learn about programming, marketing, design, or any career.

How to start contributing?

There are multiply ways to contribute, since sharing this project, improving the brand of SigmaF, helping to solve the bugs or developing new features and making improves to the source code.

  • Share this project: You can put your star in the repository, or talk about this project. You can use the hashtag #SigmaF in Twitter, LinkedIn or any social network too.

  • Improve the brand of SigmaF: If you are a marketer, designer or writer, and you want to help, you are welcome. You can contact me on Twitter like @fabianmativeal if you are interested on doing it.

  • Help to solve the bugs: if you find one bug notify me an issue. On this we can all improve this language.

  • Developing new features: If you want to develop new features or making improvements to the project, you can do a fork to the dev branch (here are the ultimate develops) working there, and later do a pull request to dev branch in order to update SigmaF.

You might also like...
Web mining module for Python, with tools for scraping, natural language processing, machine learning, network analysis and visualization.
Web mining module for Python, with tools for scraping, natural language processing, machine learning, network analysis and visualization.

Pattern Pattern is a web mining module for Python. It has tools for: Data Mining: web services (Google, Twitter, Wikipedia), web crawler, HTML DOM par

A python framework to transform natural language questions to queries in a database query language.

__ _ _ _ ___ _ __ _ _ / _` | | | |/ _ \ '_ \| | | | | (_| | |_| | __/ |_) | |_| | \__, |\__,_|\___| .__/ \__, | |_| |_| |___/

Python library for processing Chinese text

SnowNLP: Simplified Chinese Text Processing SnowNLP是一个python写的类库,可以方便的处理中文文本内容,是受到了TextBlob的启发而写的,由于现在大部分的自然语言处理库基本都是针对英文的,于是写了一个方便处理中文的类库,并且和TextBlob

A Python package implementing a new model for text classification with visualization tools for Explainable AI :octocat:
A Python package implementing a new model for text classification with visualization tools for Explainable AI :octocat:

A Python package implementing a new model for text classification with visualization tools for Explainable AI 🍣 Online live demos: http://tworld.io/s

Python bindings to the dutch NLP tool Frog (pos tagger, lemmatiser, NER tagger, morphological analysis, shallow parser, dependency parser)

Frog for Python This is a Python binding to the Natural Language Processing suite Frog. Frog is intended for Dutch and performs part-of-speech tagging

A python wrapper around the ZPar parser for English.

NOTE This project is no longer under active development since there are now really nice pure Python parsers such as Stanza and Spacy. The repository w

💫 Industrial-strength Natural Language Processing (NLP) in Python

spaCy: Industrial-strength NLP spaCy is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest researc

Python interface for converting Penn Treebank trees to Stanford Dependencies and Universal Depenencies

PyStanfordDependencies Python interface for converting Penn Treebank trees to Universal Dependencies and Stanford Dependencies. Example usage Start by

Comments
  • [Enhancement] Nateve Vectors don't allow non-numeric datatypes

    [Enhancement] Nateve Vectors don't allow non-numeric datatypes

    Vectors just allow to use numbers (int/float) into them, because Vectors are redifinening Python Built-in lists in the middle code generation process. A possible solution is to join Vectors and Matrices into a Linear datatypes with the syntax opener tag "$", and the to make independent the python lists

    opened by eanorambuena 0
  • [Bug] Double execution of the modules in assembling process

    [Bug] Double execution of the modules in assembling process

    We need to resolve the double execution of the modules in assembling process.

    The last Non Double Execution Patch has been deprecated because it did generate bugs of type: - Code segmentation in the driver_file

    bug help wanted 
    opened by eanorambuena 0
Releases(0.0.3)
Owner
Nateve
Repositories related to the Nateve Programming Language
Nateve
This program do translate english words to portuguese

Python-Dictionary This program is used to translate english words to portuguese. Web-Scraping This program use BeautifulSoap to make web scraping, so

João Assalim 1 Oct 10, 2022
ttslearn: Library for Pythonで学ぶ音声合成 (Text-to-speech with Python)

ttslearn: Library for Pythonで学ぶ音声合成 (Text-to-speech with Python) 日本語は以下に続きます (Japanese follows) English: This book is written in Japanese and primaril

Ryuichi Yamamoto 189 Dec 29, 2022
Unofficial Parallel WaveGAN (+ MelGAN & Multi-band MelGAN & HiFi-GAN & StyleMelGAN) with Pytorch

Parallel WaveGAN implementation with Pytorch This repository provides UNOFFICIAL pytorch implementations of the following models: Parallel WaveGAN Mel

Tomoki Hayashi 1.2k Dec 23, 2022
A CSRankings-like index for speech researchers

Speech Rankings This project mimics CSRankings to generate an ordered list of researchers in speech/spoken language processing along with their possib

Mutian He 19 Nov 26, 2022
💛 Code and Dataset for our EMNLP 2021 paper: "Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes"

Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes Official PyTorch implementation and EmoCause evaluatio

Hyunwoo Kim 50 Dec 21, 2022
Extracting Summary Knowledge Graphs from Long Documents

GraphSum This repo contains the data and code for the G2G model in the paper: Extracting Summary Knowledge Graphs from Long Documents. The other basel

Zeqiu (Ellen) Wu 10 Oct 21, 2022
Chinese NER with albert/electra or other bert descendable model (keras)

Chinese NLP (albert/electra with Keras) Named Entity Recognization Project Structure ./ ├── NER │   ├── __init__.py │   ├── log

2 Nov 20, 2022
100+ Chinese Word Vectors 上百种预训练中文词向量

Chinese Word Vectors 中文词向量 中文 This project provides 100+ Chinese Word Vectors (embeddings) trained with different representations (dense and sparse),

embedding 10.4k Jan 09, 2023
Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

9 Jan 08, 2023
A Multilingual Latent Dirichlet Allocation (LDA) Pipeline with Stop Words Removal, n-gram features, and Inverse Stemming, in Python.

Multilingual Latent Dirichlet Allocation (LDA) Pipeline This project is for text clustering using the Latent Dirichlet Allocation (LDA) algorithm. It

Artifici Online Services inc. 74 Oct 07, 2022
Vad-sli-asr - A Python scripts for a speech processing pipeline with Voice Activity Detection (VAD)

VAD-SLI-ASR Python scripts for a speech processing pipeline with Voice Activity

Dynamics of Language 14 Dec 09, 2022
NLP techniques such as named entity recognition, sentiment analysis, topic modeling, text classification with Python to predict sentiment and rating of drug from user reviews.

This file contains the following documents sumbited for Baruch CIS9665 group 9 fall 2021. 1. Dataset: drug_reviews.csv 2. python codes for text classi

Aarif Munwar Jahan 2 Jan 04, 2023
A Facebook Messenger Chatbot using NLP

A Facebook Messenger Chatbot using NLP This project is about creating a messenger chatbot using basic NLP techniques and models like Logistic Regressi

6 Nov 20, 2022
CoSENT 比Sentence-BERT更有效的句向量方案

CoSENT 比Sentence-BERT更有效的句向量方案

苏剑林(Jianlin Su) 201 Dec 12, 2022
An official repository for tutorials of Probabilistic Modelling and Reasoning (2021/2022) - a University of Edinburgh master's course.

PMR computer tutorials on HMMs (2021-2022) This is a repository for computer tutorials of Probabilistic Modelling and Reasoning (2021/2022) - a Univer

Vaidotas Šimkus 10 Dec 06, 2022
Deal or No Deal? End-to-End Learning for Negotiation Dialogues

Introduction This is a PyTorch implementation of the following research papers: (1) Hierarchical Text Generation and Planning for Strategic Dialogue (

Facebook Research 1.4k Dec 29, 2022
Code associated with the Don't Stop Pretraining ACL 2020 paper

dont-stop-pretraining Code associated with the Don't Stop Pretraining ACL 2020 paper Citation @inproceedings{dontstoppretraining2020, author = {Suchi

AI2 449 Jan 04, 2023
Code for papers "Generation-Augmented Retrieval for Open-Domain Question Answering" and "Reader-Guided Passage Reranking for Open-Domain Question Answering", ACL 2021

This repo provides the code of the following papers: (GAR) "Generation-Augmented Retrieval for Open-domain Question Answering", ACL 2021 (RIDER) "Read

morning 49 Dec 26, 2022
SGMC: Spectral Graph Matrix Completion

SGMC: Spectral Graph Matrix Completion Code for AAAI21 paper "Scalable and Explainable 1-Bit Matrix Completion via Graph Signal Learning". Data Format

Chao Chen 8 Dec 12, 2022
DeepAmandine is an artificial intelligence that allows you to talk to it for hours, you won't know the difference.

DeepAmandine This is an artificial intelligence based on GPT-3 that you can chat with, it is very nice and makes a lot of jokes. We wish you a good ex

BuyWithCrypto 3 Apr 19, 2022