Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

Overview

Neural Circuit Policies Enabling Auditable Autonomy

DOI

Online access via SharedIt

Neural Circuit Policies (NCPs) are designed sparse recurrent neural networks based on the LTC neuron and synapse model loosely inspired by the nervous system of the organism C. elegans. This page is a description of the Keras (TensorFlow 2 package) reference implementation of NCPs. For reproducibility materials of the paper see the corresponding subpage.

alt

Installation

Requirements:

  • Python 3.6
  • TensorFlow 2.4
  • (Optional) PyTorch 1.7
pip install keras-ncp

Update January 2021: Experimental PyTorch support added

With keras-ncp version 2.0 experimental PyTorch support is added. There is an example on how to use the PyTorch binding in the examples folder and a Colab notebook linked below. Note that the support is currently experimental, which means that it currently misses some functionality (e.g., no plotting, no irregularly sampled time-series,etc. ) and might be subject to breaking API changes in future updates.

Breaking API changes between 1.x and 2.x

The TensorFlow bindings have been moved to the tf submodule. Thus the only breaking change regarding the TensorFlow/Keras bindings concern the import

# Import shared modules for wirings, datasets,...
import kerasncp as kncp
# Import framework-specific binding
from kerasncp.tf import LTCCell      # Use TensorFlow binding
(from kerasncp.torch import LTCCell  # Use PyTorch binding)

Colab notebooks

We have created a few Google Colab notebooks for an interactive introduction to the package

Usage: the basics

The package is composed of two main parts:

  • The LTC model as a tf.keras.layers.Layer or torch.nn.Module RNN cell
  • An wiring architecture for the LTC cell above

The wiring could be fully-connected (all-to-all) or sparsely designed using the NCP principles introduced in the paper. As the LTC model is expressed in the form of a system of ordinary differential equations in time, any instance of it is inherently a recurrent neural network (RNN).

Let's create a LTC network consisting of 8 fully-connected neurons that receive a time-series of 2 input features as input. Moreover, we define that 1 of the 8 neurons acts as the output (=motor neuron):

from tensorflow import keras
import kerasncp as kncp
from kerasncp.tf import LTCCell

wiring = kncp.wirings.FullyConnected(8, 1)  # 8 units, 1 motor neuron
ltc_cell = LTCCell(wiring) # Create LTC model

model = keras.Sequential(
    [
        keras.layers.InputLayer(input_shape=(None, 2)), # 2 input features
        keras.layers.RNN(ltc_cell, return_sequences=True),
    ]
)
model.compile(
    optimizer=keras.optimizers.Adam(0.01), loss='mean_squared_error'
)

We can then fit this model to a generated sine wave, as outlined in the tutorials (open in Google Colab).

alt

More complex architectures

We can also create some more complex NCP wiring architecture. Simply put, an NCP is a 4-layer design vaguely inspired by the wiring of the C. elegans worm. The four layers are sensory, inter, command, and motor layer, which are sparsely connected in a feed-forward fashion. On top of that, the command layer realizes some recurrent connections. As their names already indicate, the sensory represents the input and the motor layer the output of the network.

We can also customize some of the parameter initialization ranges, although the default values should work fine for most cases.

ncp_wiring = kncp.wirings.NCP(
    inter_neurons=20,  # Number of inter neurons
    command_neurons=10,  # Number of command neurons
    motor_neurons=5,  # Number of motor neurons
    sensory_fanout=4,  # How many outgoing synapses has each sensory neuron
    inter_fanout=5,  # How many outgoing synapses has each inter neuron
    recurrent_command_synapses=6,  # Now many recurrent synapses are in the
    # command neuron layer
    motor_fanin=4,  # How many incoming synapses has each motor neuron
)
ncp_cell = LTCCell(
    ncp_wiring,
    initialization_ranges={
        # Overwrite some of the initialization ranges
        "w": (0.2, 2.0),
    },
)

We can then combine the NCP cell with arbitrary keras.layers, for instance to build a powerful image sequence classifier:

height, width, channels = (78, 200, 3)

model = keras.models.Sequential(
    [
        keras.layers.InputLayer(input_shape=(None, height, width, channels)),
        keras.layers.TimeDistributed(
            keras.layers.Conv2D(32, (5, 5), activation="relu")
        ),
        keras.layers.TimeDistributed(keras.layers.MaxPool2D()),
        keras.layers.TimeDistributed(
            keras.layers.Conv2D(64, (5, 5), activation="relu")
        ),
        keras.layers.TimeDistributed(keras.layers.MaxPool2D()),
        keras.layers.TimeDistributed(keras.layers.Flatten()),
        keras.layers.TimeDistributed(keras.layers.Dense(32, activation="relu")),
        keras.layers.RNN(ncp_cell, return_sequences=True),
        keras.layers.TimeDistributed(keras.layers.Activation("softmax")),
    ]
)
model.compile(
    optimizer=keras.optimizers.Adam(0.01),
    loss='sparse_categorical_crossentropy',
)
@article{lechner2020neural,
  title={Neural circuit policies enabling auditable autonomy},
  author={Lechner, Mathias and Hasani, Ramin and Amini, Alexander and Henzinger, Thomas A and Rus, Daniela and Grosu, Radu},
  journal={Nature Machine Intelligence},
  volume={2},
  number={10},
  pages={642--652},
  year={2020},
  publisher={Nature Publishing Group}
}
You might also like...
Code to use Augmented Shapiro Wilks Stopping, as well as code for the paper "Statistically Signifigant Stopping of Neural Network Training"

This codebase is being actively maintained, please create and issue if you have issues using it Basics All data files are included under losses and ea

This repository contains the code for EMNLP-2021 paper "Word-Level Coreference Resolution"

Word-Level Coreference Resolution This is a repository with the code to reproduce the experiments described in the paper of the same name, which was a

Code for our paper
Code for our paper "Mask-Align: Self-Supervised Neural Word Alignment" in ACL 2021

Mask-Align: Self-Supervised Neural Word Alignment This is the implementation of our work Mask-Align: Self-Supervised Neural Word Alignment. @inproceed

Code for the paper: Sequence-to-Sequence Learning with Latent Neural Grammars

Code for the paper: Sequence-to-Sequence Learning with Latent Neural Grammars

Code to reprudece NeurIPS paper: Accelerated Sparse Neural Training: A Provable and Efficient Method to Find N:M Transposable Masks

Accelerated Sparse Neural Training: A Provable and Efficient Method to FindN:M Transposable Masks Recently, researchers proposed pruning deep neural n

Easy to use, state-of-the-art Neural Machine Translation for 100+ languages

EasyNMT - Easy to use, state-of-the-art Neural Machine Translation This package provides easy to use, state-of-the-art machine translation for more th

Open Source Neural Machine Translation in PyTorch
Open Source Neural Machine Translation in PyTorch

OpenNMT-py: Open-Source Neural Machine Translation OpenNMT-py is the PyTorch version of the OpenNMT project, an open-source (MIT) neural machine trans

Sequence-to-sequence framework with a focus on Neural Machine Translation based on Apache MXNet

Sockeye This package contains the Sockeye project, an open-source sequence-to-sequence framework for Neural Machine Translation based on Apache MXNet

Releases(v2.0.0)
Owner
PhD candidate at IST Austria. Working on Machine Learning, Robotics, and Verification
DataCLUE: 国内首个以数据为中心的AI测评(含模型分析报告)

DataCLUE 以数据为中心的AI测评(DataCLUE) DataCLUE: A Chinese Data-centric Language Evaluation Benchmark 内容导引 章节 描述 简介 介绍以数据为中心的AI测评(DataCLUE)的背景 任务描述 任务描述 实验结果

CLUE benchmark 135 Dec 22, 2022
SNCSE: Contrastive Learning for Unsupervised Sentence Embedding with Soft Negative Samples

SNCSE SNCSE: Contrastive Learning for Unsupervised Sentence Embedding with Soft Negative Samples This is the repository for SNCSE. SNCSE aims to allev

Sense-GVT 59 Jan 02, 2023
Toy example of an applied ML pipeline for me to experiment with MLOps tools.

Toy Machine Learning Pipeline Table of Contents About Getting Started ML task description and evaluation procedure Dataset description Repository stru

Shreya Shankar 190 Dec 21, 2022
Generate text line images for training deep learning OCR model (e.g. CRNN)

Generate text line images for training deep learning OCR model (e.g. CRNN)

532 Jan 06, 2023
Text-Based zombie apocalyptic decision-making game in Python

Inspiration We shared university first year game coursework.[to gauge previous experience and start brainstorming] Adapted a particular nuclear fallou

Amin Sabbagh 2 Feb 17, 2022
A number of methods in order to perform Natural Language Processing on live data derived from Twitter

A number of methods in order to perform Natural Language Processing on live data derived from Twitter

1 Nov 24, 2021
Research Code for NeurIPS 2020 Spotlight paper "Large-Scale Adversarial Training for Vision-and-Language Representation Learning": UNITER adversarial training part

VILLA: Vision-and-Language Adversarial Training This is the official repository of VILLA (NeurIPS 2020 Spotlight). This repository currently supports

Zhe Gan 109 Dec 31, 2022
✨Rubrix is a production-ready Python framework for exploring, annotating, and managing data in NLP projects.

✨A Python framework to explore, label, and monitor data for NLP projects

Recognai 1.5k Jan 02, 2023
Get list of common stop words in various languages in Python

Python Stop Words Table of contents Overview Available languages Installation Basic usage Python compatibility Overview Get list of common stop words

Alireza Savand 142 Dec 21, 2022
A Multilingual Latent Dirichlet Allocation (LDA) Pipeline with Stop Words Removal, n-gram features, and Inverse Stemming, in Python.

Multilingual Latent Dirichlet Allocation (LDA) Pipeline This project is for text clustering using the Latent Dirichlet Allocation (LDA) algorithm. It

Artifici Online Services inc. 74 Oct 07, 2022
Mapping a variable-length sentence to a fixed-length vector using BERT model

Are you looking for X-as-service? Try the Cloud-Native Neural Search Framework for Any Kind of Data bert-as-service Using BERT model as a sentence enc

Han Xiao 11.1k Jan 01, 2023
Non-Autoregressive Predictive Coding

Non-Autoregressive Predictive Coding This repository contains the implementation of Non-Autoregressive Predictive Coding (NPC) as described in the pre

Alexander H. Liu 43 Nov 15, 2022
NLP topic mdel LDA - Gathered from New York Times website

NLP topic mdel LDA - Gathered from New York Times website

1 Oct 14, 2021
EasyTransfer is designed to make the development of transfer learning in NLP applications easier.

EasyTransfer is designed to make the development of transfer learning in NLP applications easier. The literature has witnessed the success of applying

Alibaba 819 Jan 03, 2023
Official source for spanish Language Models and resources made @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).

Spanish Language Models 💃🏻 Corpora 📃 Corpora Number of documents Size (GB) BNE 201,080,084 570GB Models 🤖 RoBERTa-base BNE: https://huggingface.co

PlanTL-SANIDAD 203 Dec 20, 2022
A library for finding knowledge neurons in pretrained transformer models.

knowledge-neurons An open source repository replicating the 2021 paper Knowledge Neurons in Pretrained Transformers by Dai et al., and extending the t

EleutherAI 96 Dec 21, 2022
Long text token classification using LongFormer

Long text token classification using LongFormer

abhishek thakur 161 Aug 07, 2022
Must-read papers on improving efficiency for pre-trained language models.

Must-read papers on improving efficiency for pre-trained language models.

Tobias Lee 89 Jan 03, 2023
Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing

Introduction Funnel-Transformer is a new self-attention model that gradually compresses the sequence of hidden states to a shorter one and hence reduc

GUOKUN LAI 197 Dec 11, 2022
sangha, pronounced "suhng-guh", is a social networking, booking platform where students and teachers can share their practice.

Flask React Project This is the backend for the Flask React project. Getting started Clone this repository (only this branch) git clone https://github

Courtney Newcomer 17 Sep 29, 2021