This is the code repository for Interpretable Machine Learning with Python, published by Packt.

Overview

Interpretable Machine Learning with Python

Interpretable Machine Learning with Pythone

This is the code repository for Interpretable Machine Learning with Python, published by Packt.

Learn to build interpretable high-performance models with hands-on real-world examples

What is this book about?

Do you want to understand your models and mitigate the risks associated with poor predictions using practical machine learning (ML) interpretation? Interpretable Machine Learning with Python can help you overcome these challenges, using interpretation methods to build fairer and safer ML models.

This book covers the following exciting features:

  • Recognize the importance of interpretability in business
  • Study models that are intrinsically interpretable such as linear models, decision trees, and Naïve Bayes
  • Become well-versed in interpreting models with model-agnostic methods
  • Visualize how an image classifier works and what it learns
  • Understand how to mitigate the influence of bias in datasets

If you feel this book is for you, get your copy today!

https://www.packtpub.com/

Instructions and Navigations

All of the code is organized into folders. For example, Chapter02.

The code will look like the following:

base_classifier = KerasClassifier(model=base_model,\
                                  clip_values=(min_, max_))
y_test_mdsample_prob = np.max(y_test_prob[sampl_md_idxs],\
                                                       axis=1)
y_test_smsample_prob = np.max(y_test_prob[sampl_sm_idxs],\
                                                       axis=1)

Following is what you need for this book: This book is for data scientists, machine learning developers, and data stewards who have an increasingly critical responsibility to explain how the AI systems they develop work, their impact on decision making, and how they identify and manage bias. Working knowledge of machine learning and the Python programming language is expected.

With the following software and hardware list you can run all code files present in the book (Chapter 1-14).

Software and Hardware List

You can install the software required in any operating system by first installing Jupyter Notebook or Jupyter Lab with the most recent version of Python, or install Anaconda which can install everything at once. While hardware requirements for Jupyter are relatively modest, we recommend a machine with at least 4 cores of 2Ghz and 8Gb of RAM.

Alternatively, to installing the software locally, you can run the code in the cloud using Google Colab or another cloud notebook service.

Either way, the following packages are required to run the code in all the chapters (Google Colab has all the packages denoted with a ^):

Chapter Software required OS required
1 - 13 ^ Python 3.6+ Windows, Mac OS X, and Linux (Any)
1 - 13 ^ matplotlib 3.2.2+ Windows, Mac OS X, and Linux (Any)
1 - 13 ^ scikit-learn 0.22.2+ Windows, Mac OS X, and Linux (Any)
1 - 12 ^ pandas 1.1.5+ Windows, Mac OS X, and Linux (Any)
2 - 13 machine-learning-datasets 0.01.16+ Windows, Mac OS X, and Linux (Any)
2 - 13 ^ numpy 1.19.5+ Windows, Mac OS X, and Linux (Any)
3 - 13 ^ seaborn 0.11.1+ Windows, Mac OS X, and Linux (Any)
3 - 13 ^ tensorflow 2.4.1+ Windows, Mac OS X, and Linux (Any)
5 - 12 shap 0.38.1+ Windows, Mac OS X, and Linux (Any)
1, 5, 10, 12 ^ scipy 1.4.1+ Windows, Mac OS X, and Linux (Any)
5, 10-12 ^ xgboost 0.90+ Windows, Mac OS X, and Linux (Any)
6, 11, 12 ^ lightgbm 2.2.3+ Windows, Mac OS X, and Linux (Any)
7 - 9 alibi 0.5.5+ Windows, Mac OS X, and Linux (Any)
10 - 13 ^ tqdm 4.41.1+ Windows, Mac OS X, and Linux (Any)
2, 9 ^ statsmodels 0.10.2+ Windows, Mac OS X, and Linux (Any)
3, 5 rulefit 0.3.1+ Windows, Mac OS X, and Linux (Any)
6, 8 lime 0.2.0.1+ Windows, Mac OS X, and Linux (Any)
7, 12 catboost 0.24.4+ Windows, Mac OS X, and Linux (Any)
8, 9 ^ Keras 2.4.3+ Windows, Mac OS X, and Linux (Any)
11, 12 ^ pydot 1.3.0+ Windows, Mac OS X, and Linux (Any)
11, 12 xai 0.0.4+ Windows, Mac OS X, and Linux (Any)
1 ^ beautifulsoup4 4.6.3+ Windows, Mac OS X, and Linux (Any)
1 ^ requests 2.23.0+ Windows, Mac OS X, and Linux (Any)
3 cvae 0.0.3+ Windows, Mac OS X, and Linux (Any)
3 interpret 0.2.2+ Windows, Mac OS X, and Linux (Any)
3 ^ six 1.15.0+ Windows, Mac OS X, and Linux (Any)
3 skope-rules 1.0.1+ Windows, Mac OS X, and Linux (Any)
4 PDPbox 0.2.0+ Windows, Mac OS X, and Linux (Any)
4 pycebox 0.0.1+ Windows, Mac OS X, and Linux (Any)
5 alepython 0.1+ Windows, Mac OS X, and Linux (Any)
5 tensorflow-docs 0.0.02+ Windows, Mac OS X, and Linux (Any)
6 ^ nltk 3.2.5+ Windows, Mac OS X, and Linux (Any)
7 witwidget 1.7.0+ Windows, Mac OS X, and Linux (Any)
8 ^ opencv-python 4.1.2.30+ Windows, Mac OS X, and Linux (Any)
8 ^ scikit-image 0.16.2+ Windows, Mac OS X, and Linux (Any)
8 tf-explain 0.2.1+ Windows, Mac OS X, and Linux (Any)
8 tf-keras-vis 0.5.5+ Windows, Mac OS X, and Linux (Any)
9 SALib 1.3.12+ Windows, Mac OS X, and Linux (Any)
9 distython 0.0.3+ Windows, Mac OS X, and Linux (Any)
10 ^ mlxtend 0.14.0+ Windows, Mac OS X, and Linux (Any)
10 sklearn-genetic 0.3.0+ Windows, Mac OS X, and Linux (Any)
11 aif360==0.3.0 Windows, Mac OS X, and Linux (Any)
11 BlackBoxAuditing==0.1.54 Windows, Mac OS X, and Linux (Any)
11 dowhy 0.5.1+ Windows, Mac OS X, and Linux (Any)
11 econml 0.9.0+ Windows, Mac OS X, and Linux (Any)
11 ^ networkx 2.5+ Windows, Mac OS X, and Linux (Any)
12 bayesian-optimization 1.2.0+ Windows, Mac OS X, and Linux (Any)
12 ^ graphviz 0.10.1+ Windows, Mac OS X, and Linux (Any)
12 tensorflow-lattice 2.0.7+ Windows, Mac OS X, and Linux (Any)
13 adversarial-robustness-toolbox 1.5.0+ Windows, Mac OS X, and Linux (Any)

NOTE: the library machine-learning-datasets is the official name of what in the book is referred to as mldatasets. Due to naming conflicts, it had to be changed.

The exact versions of each library, as tested, can be found in the requirements.txt file and installed like this should you have a dedicated environment for them:

> pip install -r requirements.txt

You might get some conflicts specifically with libraries cvae, alepython, pdpbox and xai. If this is the case, try:

> pip install --no-deps -r requirements.txt

Alternatively, you can install libraries one chapter at a time inside of a local Jupyter environment using cells with !pip install or run all the code in Google Colab with the following links:

Remember to make sure you click on the menu item "File > Save a copy in Drive" as soon you open each link to ensure that your notebook is saved as you run it. Also, notebooks denoted with plus sign (+) are relatively compute-intensive, and will take an extremely long time to run on Google Colab but if you must go to "Runtime > Change runtime type" and select "High-RAM" for runtime shape. Otherwise, a better cloud enviornment or local environment is preferable.

We also provide a PDF file that has color images of the screenshots/diagrams used in this book. Click here to download it.

Summary

The book does much more than explain technical topics, but here's a summary of the chapters:

Chapters topics

Related products

Get to Know the Authors

Serg Masís has been at the confluence of the internet, application development, and analytics for the last two decades. Currently, he's a Climate and Agronomic Data Scientist at Syngenta, a leading agribusiness company with a mission to improve global food security. Before that role, he co-founded a startup, incubated by Harvard Innovation Labs, that combined the power of cloud computing and machine learning with principles in decision-making science to expose users to new places and events. Whether it pertains to leisure activities, plant diseases, or customer lifetime value, Serg is passionate about providing the often-missing link between data and decision-making — and machine learning interpretation helps bridge this gap more robustly.

Owner
Packt
Providing books, eBooks, video tutorials, and articles for IT developers, administrators, and users.
Packt
This is the code repository for Interpretable Machine Learning with Python, published by Packt.

Interpretable Machine Learning with Python, published by Packt

Packt 299 Jan 02, 2023
Python based GBDT implementation

Py-boost: a research tool for exploring GBDTs Modern gradient boosting toolkits are very complex and are written in low-level programming languages. A

Sberbank AI Lab 20 Sep 21, 2022
Python ML pipeline that showcases mltrace functionality.

mltrace tutorial Date: October 2021 This tutorial builds a training and testing pipeline for a toy ML prediction problem: to predict whether a passeng

Log Labs 28 Nov 09, 2022
Uplift modeling and causal inference with machine learning algorithms

Disclaimer This project is stable and being incubated for long-term support. It may contain new experimental code, for which APIs are subject to chang

Uber Open Source 3.7k Jan 07, 2023
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.

Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a

Microsoft 14.5k Jan 07, 2023
PennyLane is a cross-platform Python library for differentiable programming of quantum computers

PennyLane is a cross-platform Python library for differentiable programming of quantum computers. Train a quantum computer the same way as a neural ne

PennyLaneAI 1.6k Jan 01, 2023
MLflow App Using React, Hooks, RabbitMQ, FastAPI Server, Celery, Microservices

Katana ML Skipper This is a simple and flexible ML workflow engine. It helps to orchestrate events across a set of microservices and create executable

Tom Xu 8 Nov 17, 2022
Responsible Machine Learning with Python

Examples of techniques for training interpretable ML models, explaining ML models, and debugging ML models for accuracy, discrimination, and security.

ph_ 624 Jan 06, 2023
STUMPY is a powerful and scalable Python library for computing a Matrix Profile, which can be used for a variety of time series data mining tasks

STUMPY STUMPY is a powerful and scalable library that efficiently computes something called the matrix profile, which can be used for a variety of tim

TD Ameritrade 2.5k Jan 06, 2023
jaxfg - Factor graph-based nonlinear optimization library for JAX.

Factor graphs + nonlinear optimization in JAX

Brent Yi 134 Dec 21, 2022
Microsoft contributing libraries, tools, recipes, sample codes and workshop contents for machine learning & deep learning.

Microsoft contributing libraries, tools, recipes, sample codes and workshop contents for machine learning & deep learning.

Microsoft 366 Jan 03, 2023
Spark development environment for k8s

Local Spark Dev Env with Docker Development environment for k8s. Using the spark-operator image to ensure it will be the same environment. Start conta

Otacilio Filho 18 Jan 04, 2022
PySpark + Scikit-learn = Sparkit-learn

Sparkit-learn PySpark + Scikit-learn = Sparkit-learn GitHub: https://github.com/lensacom/sparkit-learn About Sparkit-learn aims to provide scikit-lear

Lensa 1.1k Jan 04, 2023
distfit - Probability density fitting

Python package for probability density function fitting of univariate distributions of non-censored data

Erdogan Taskesen 187 Dec 30, 2022
AP1 Transcription Factor Binding Site Prediction

A machine learning project that predicted binding sites of AP1 transcription factor, using ChIP-Seq data and local DNA shape information.

1 Jan 21, 2022
Model Validation Toolkit is a collection of tools to assist with validating machine learning models prior to deploying them to production and monitoring them after deployment to production.

Model Validation Toolkit is a collection of tools to assist with validating machine learning models prior to deploying them to production and monitoring them after deployment to production.

FINRA 25 Dec 28, 2022
Machine Learning e Data Science com Python

Machine Learning e Data Science com Python Arquivos do curso de Data Science e Machine Learning com Python na Udemy, cliqe aqui para acessá-lo. O prin

Renan Barbosa 1 Jan 27, 2022
Stacked Generalization (Ensemble Learning)

Stacking (stacked generalization) Overview ikki407/stacking - Simple and useful stacking library, written in Python. User can use models of scikit-lea

Ikki Tanaka 192 Dec 23, 2022
machine learning model deployment project of Iris classification model in a minimal UI using flask web framework and deployed it in Azure cloud using Azure app service

This is a machine learning model deployment project of Iris classification model in a minimal UI using flask web framework and deployed it in Azure cloud using Azure app service. We initially made th

Krishna Priyatham Potluri 73 Dec 01, 2022
Transpile trained scikit-learn estimators to C, Java, JavaScript and others.

sklearn-porter Transpile trained scikit-learn estimators to C, Java, JavaScript and others. It's recommended for limited embedded systems and critical

Darius Morawiec 1.2k Jan 05, 2023