This is the material used in my free Persian course: Machine Learning with Python

Overview

Machine_Learning_intro

:) سلام دوستان

This is the material used in my free Persian course: Machine Learning with Python (available on YouTube).

This 2 hours long course offers a practical introduction into Machine Learning with Python. this course is for you if you are familiar with data analytics libraries in Python (Pandas, NumPy, Matplotlib) and you are looking for a hands-on introduction to Machine Learning. After finishing this course, you will grasp the basic concepts in Machine Learning and be able to use its techniques on any data with Scikit-Learn, the most commonly used library for Machine Learning in Python.

Note

Oddly, the notebook cells are horizontally aligned when rendered on GitHub. I haven't found the solution to this problem unfortunately. However, they are correctly aligned when rendered on Jupyter, so I recommend downloading the notebook files and opening them with Jupyter or Colab or similar IDEs.


Topics covered:

Intro_to_ML_1:

  • 1:
    • What is Machine Learning?
    • Types of Machine Learning
    • Types of Supervised Learning
  • 2.1:
    • Types of Regression
    • Simple Linear Regression
  • 2.2:
    • Model Evaluation in Regression
    • Overfitting
    • Train/test split
    • Cross-Validation
    • Accuracy Metrics for Regression
    • Simple Linear Regression with Python
  • 2.3:
    • Multiple Linear Regression with Python
    • Polynomial Regression with Python
  • 2.4:
    • Regularization
    • Ridge Regression with Python
    • Lasso Regression with Python

Intro_to_ML_2:

  • 3.1:
    • Types of Classification
    • K-nearest neighbors (KNN)
  • 3.2:
    • Evaluation metrics in Classification
    • Confusion Matrix
    • KNN with Python
  • 3.3:
    • Decision Trees with Python
    • Logistic Regression with Python
    • Support Vector Machines (SVM) with Python
  • 3.4:
    • Neural Networks
    • Perceptron with Python
    • Multi-Layer Perceptron (MLP) with Python

Intro_to_ML_3:

  • 4:
    • Why reduce dimensionality?
    • Feature Selection with Python
    • Feature Extraction with Python

Contact

Feel free to email me your questions here: [email protected]

Material gathered, created, and taught by Yara Mohamadi.

Owner
Yara Mohamadi
Yara Mohamadi
Greykite: A flexible, intuitive and fast forecasting library

The Greykite library provides flexible, intuitive and fast forecasts through its flagship algorithm, Silverkite.

LinkedIn 1.7k Jan 04, 2023
This repository contains the code to predict house price using Linear Regression Method

House-Price-Prediction-Using-Linear-Regression The dataset I used for this personal project is from Kaggle uploaded by aariyan panchal. Link of Datase

0 Jan 28, 2022
Magenta: Music and Art Generation with Machine Intelligence

Magenta is a research project exploring the role of machine learning in the process of creating art and music. Primarily this involves developing new

Magenta 18.1k Dec 30, 2022
A library to generate synthetic time series data by easy-to-use factors and generator

timeseries-generator This repository consists of a python packages that generates synthetic time series dataset in a generic way (under /timeseries_ge

Nike Inc. 87 Dec 20, 2022
A simple guide to MLOps through ZenML and its various integrations.

ZenBytes Join our Slack Community and become part of the ZenML family Give the main ZenML repo a GitHub star to show your love ZenBytes is a series of

ZenML 127 Dec 27, 2022
Continuously evaluated, functional, incremental, time-series forecasting

timemachines Autonomous, univariate, k-step ahead time-series forecasting functions assigned Elo ratings You can: Use some of the functionality of a s

Peter Cotton 343 Jan 04, 2023
Python implementation of the rulefit algorithm

RuleFit Implementation of a rule based prediction algorithm based on the rulefit algorithm from Friedman and Popescu (PDF) The algorithm can be used f

Christoph Molnar 326 Jan 02, 2023
Responsible Machine Learning with Python

Examples of techniques for training interpretable ML models, explaining ML models, and debugging ML models for accuracy, discrimination, and security.

ph_ 624 Jan 06, 2023
TIANCHI Purchase Redemption Forecast Challenge

TIANCHI Purchase Redemption Forecast Challenge

Haorui HE 4 Aug 26, 2022
The Fuzzy Labs guide to the universe of open source MLOps

Open Source MLOps This is the Fuzzy Labs guide to the universe of free and open source MLOps tools. Contents What is MLOps, anyway? Data version contr

Fuzzy Labs 352 Dec 29, 2022
🎛 Distributed machine learning made simple.

🎛 lazycluster Distributed machine learning made simple. Use your preferred distributed ML framework like a lazy engineer. Getting Started • Highlight

Machine Learning Tooling 44 Nov 27, 2022
Data science, Data manipulation and Machine learning package.

duality Data science, Data manipulation and Machine learning package. Use permitted according to the terms of use and conditions set by the attached l

David Kundih 3 Oct 19, 2022
Winning solution for the Galaxy Challenge on Kaggle

Winning solution for the Galaxy Challenge on Kaggle

Sander Dieleman 483 Jan 02, 2023
Evaluate on three different ML model for feature selection using Breast cancer data.

Anomaly-detection-Feature-Selection Evaluate on three different ML model for feature selection using Breast cancer data. ML models: SVM, KNN and MLP.

Tarek idrees 1 Mar 17, 2022
Real-time domain adaptation for semantic segmentation

Advanced-Machine-Learning This repository contains the code for the project Real

Andrea Cavallo 1 Jan 30, 2022
Python 3.6+ toolbox for submitting jobs to Slurm

Submit it! What is submitit? Submitit is a lightweight tool for submitting Python functions for computation within a Slurm cluster. It basically wraps

Facebook Incubator 768 Jan 03, 2023
Free MLOps course from DataTalks.Club

MLOps Zoomcamp Our MLOps Zoomcamp course Sign up here: https://airtable.com/shrCb8y6eTbPKwSTL (it's not automated, you will not receive an email immed

DataTalksClub 4.6k Dec 31, 2022
MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training

MosaicML Composer MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training. We aim to ease th

MosaicML 2.8k Jan 06, 2023
Bayesian Modeling and Computation in Python

Bayesian Modeling and Computation in Python Open access and Code This repository contains the open access version of the text and the code examples in

Bayesian Modeling and Computation in Python 339 Jan 02, 2023