Dragonfly is an open source python library for scalable Bayesian optimisation.

Overview


Dragonfly is an open source python library for scalable Bayesian optimisation.

Bayesian optimisation is used for optimising black-box functions whose evaluations are usually expensive. Beyond vanilla optimisation techniques, Dragonfly provides an array of tools to scale up Bayesian optimisation to expensive large scale problems. These include features/functionality that are especially suited for high dimensional optimisation (optimising for a large number of variables), parallel evaluations in synchronous or asynchronous settings (conducting multiple evaluations in parallel), multi-fidelity optimisation (using cheap approximations to speed up the optimisation process), and multi-objective optimisation (optimising multiple functions simultaneously).

Dragonfly is compatible with Python2 (>= 2.7) and Python3 (>= 3.5) and has been tested on Linux, macOS, and Windows platforms. For documentation, installation, and a getting started guide, see our readthedocs page. For more details, see our paper.

 

Installation

See here for detailed instructions on installing Dragonfly and its dependencies.

Quick Installation: If you have done this kind of thing before, you should be able to install Dragonfly via pip.

$ sudo apt-get install python-dev python3-dev gfortran # On Ubuntu/Debian
$ pip install numpy
$ pip install dragonfly-opt -v

Testing the Installation: You can import Dragonfly in python to test if it was installed properly. If you have installed via source, make sure that you move to a different directory to avoid naming conflicts.

$ python
>>> from dragonfly import minimise_function
>>> # The first argument below is the function, the second is the domain, and the third is the budget.
>>> min_val, min_pt, history = minimise_function(lambda x: x ** 4 - x**2 + 0.1 * x, [[-10, 10]], 10);  
...
>>> min_val, min_pt
(-0.32122746026750953, array([-0.7129672]))

Due to stochasticity in the algorithms, the above values for min_val, min_pt may be different. If you run it for longer (e.g. min_val, min_pt, history = minimise_function(lambda x: x ** 4 - x**2 + 0.1 * x, [[-10, 10]], 100)), you should get more consistent values for the minimum.

If the installation fails or if there are warning messages, see detailed instructions here.

 

Quick Start

Dragonfly can be used directly in the command line by calling dragonfly-script.py or be imported in python code via the maximise_function function in the main library or in ask-tell mode. To help get started, we have provided some examples in the examples directory. See our readthedocs getting started pages (command line, Python, Ask-Tell) for examples and use cases.

Command line: Below is an example usage in the command line.

$ cd examples
$ dragonfly-script.py --config synthetic/branin/config.json --options options_files/options_example.txt

In Python code: The main APIs for Dragonfly are defined in dragonfly/apis. For their definitions and arguments, see dragonfly/apis/opt.py and dragonfly/apis/moo.py. You can import the main API in python code via,

from dragonfly import minimise_function, maximise_function
func = lambda x: x ** 4 - x**2 + 0.1 * x
domain = [[-10, 10]]
max_capital = 100
min_val, min_pt, history = minimise_function(func, domain, max_capital)
print(min_val, min_pt)
max_val, max_pt, history = maximise_function(lambda x: -func(x), domain, max_capital)
print(max_val, max_pt)

Here, func is the function to be maximised, domain is the domain over which func is to be optimised, and max_capital is the capital available for optimisation. The domain can be specified via a JSON file or in code. See here, here, here, here, here, here, here, here, here, here, and here for more detailed examples.

In Ask-Tell Mode: Ask-tell mode provides you more control over your experiments where you can supply past results to our API in order to obtain a recommendation. See the following example for more details.

For a comprehensive list of uses cases, including multi-objective optimisation, multi-fidelity optimisation, neural architecture search, and other optimisation methods (besides Bayesian optimisation), see our readthe docs pages (command line, Python, Ask-Tell)).

 

Contributors

Kirthevasan Kandasamy: github, webpage
Karun Raju Vysyaraju: github, linkedin
Anthony Yu: github, linkedin
Willie Neiswanger: github, webpage
Biswajit Paria: github, webpage
Chris Collins: github, webpage

Acknowledgements

Research and development of the methods in this package were funded by DOE grant DESC0011114, NSF grant IIS1563887, the DARPA D3M program, and AFRL.

Citation

If you use any part of this code in your work, please cite our JMLR paper.

@article{JMLR:v21:18-223,
  author  = {Kirthevasan Kandasamy and Karun Raju Vysyaraju and Willie Neiswanger and Biswajit Paria and Christopher R. Collins and Jeff Schneider and Barnabas Poczos and Eric P. Xing},
  title   = {Tuning Hyperparameters without Grad Students: Scalable and Robust Bayesian Optimisation with Dragonfly},
  journal = {Journal of Machine Learning Research},
  year    = {2020},
  volume  = {21},
  number  = {81},
  pages   = {1-27},
  url     = {http://jmlr.org/papers/v21/18-223.html}
}

License

This software is released under the MIT license. For more details, please refer LICENSE.txt.

For questions, please email [email protected].

"Copyright 2018-2019 Kirthevasan Kandasamy"

A pure-python implementation of the UpSet suite of visualisation methods by Lex, Gehlenborg et al.

pyUpSet A pure-python implementation of the UpSet suite of visualisation methods by Lex, Gehlenborg et al. Contents Purpose How to install How it work

288 Jan 04, 2023
Machine Learning Techniques using python.

👋 Hi, I’m Fahad from TEXAS TECH. 👀 I’m interested in Optimization / Machine Learning/ Statistics 🌱 I’m currently learning Machine Learning and Stat

FAHAD MOSTAFA 1 Jan 19, 2022
Katana project is a template for ASAP 🚀 ML application deployment

Katana project is a FastAPI template for ASAP 🚀 ML API deployment

Mohammad Shahebaz 100 Dec 26, 2022
A chain of stores, 10 different stores and 50 different requests a 3-month demand forecast for its product.

Demand-Forecasting Business Problem A chain of stores, 10 different stores and 50 different requests a 3-month demand forecast for its product.

Ayşe Nur Türkaslan 3 Mar 06, 2022
XGBoost-Ray is a distributed backend for XGBoost, built on top of distributed computing framework Ray.

XGBoost-Ray is a distributed backend for XGBoost, built on top of distributed computing framework Ray.

92 Dec 14, 2022
Multiple Linear Regression using the LinearRegression class from sklearn.linear_model library

Multiple-Linear-Regression-master - A python program to implement Multiple Linear Regression using the LinearRegression class from sklearn.linear model library

Kushal Shingote 1 Feb 06, 2022
A Lucid Framework for Transparent and Interpretable Machine Learning Models.

Currently a Beta-Version lucidmode is an open-source, low-code and lightweight Python framework for transparent and interpretable machine learning mod

lucidmode 15 Aug 12, 2022
using Machine Learning Algorithm to classification AppleStore application

AppleStore-classification-with-Machine-learning-Algo- using Machine Learning Algorithm to classification AppleStore application. the first step : 1: p

Mohammed Hussien 2 May 02, 2022
Machine-Learning with python (jupyter)

Machine-Learning with python (jupyter) 머신러닝 야학 작심 10일과 쥬피터 노트북 기반 데이터 사이언스 시작 들어가기전 https://nbviewer.org/ 페이지를 통해서 쥬피터 노트북 내용을 볼 수 있다. 위 페이지에서 현재 레포 기

HyeonWoo Jeong 1 Jan 23, 2022
Kaggle Competition using 15 numerical predictors to predict a continuous outcome.

Kaggle-Comp.-Data-Mining Kaggle Competition using 15 numerical predictors to predict a continuous outcome as part of a final project for a stats data

moisey alaev 1 Dec 28, 2021
Xeasy-ml is a packaged machine learning framework.

xeasy-ml 1. What is xeasy-ml Xeasy-ml is a packaged machine learning framework. It allows a beginner to quickly build a machine learning model and use

9 Mar 14, 2022
Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations.

BO-GP Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations. The BO-GP codes are developed using GPy and GPyOpt. The optimizer

KTH Mechanics 8 Mar 31, 2022
MIT-Machine Learning with Python–From Linear Models to Deep Learning

MIT-Machine Learning with Python–From Linear Models to Deep Learning | One of the 5 courses in MIT MicroMasters in Statistics & Data Science Welcome t

2 Aug 23, 2022
A webpage that utilizes machine learning to extract sentiments from tweets.

Tweets_Classification_Webpage The goal of this project is to be able to predict what rating customers on social media platforms would give to products

Ayaz Nakhuda 1 Dec 30, 2021
Painless Machine Learning for python based on scikit-learn

PlainML Painless Machine Learning Library for python based on scikit-learn. Install pip install plainml Example from plainml import KnnModel, load_ir

1 Aug 06, 2022
MegFlow - Efficient ML solutions for long-tailed demands.

Efficient ML solutions for long-tailed demands.

旷视天元 MegEngine 371 Dec 21, 2022
Distributed training framework for TensorFlow, Keras, PyTorch, and Apache MXNet.

Horovod Horovod is a distributed deep learning training framework for TensorFlow, Keras, PyTorch, and Apache MXNet. The goal of Horovod is to make dis

Horovod 12.9k Jan 07, 2023
WAGMA-SGD is a decentralized asynchronous SGD for distributed deep learning training based on model averaging.

WAGMA-SGD is a decentralized asynchronous SGD based on wait-avoiding group model averaging. The synchronization is relaxed by making the collectives externally-triggerable, namely, a collective can b

Shigang Li 6 Jun 18, 2022
A concept I came up which ditches the idea of "layers" in a neural network.

Dynet A concept I came up which ditches the idea of "layers" in a neural network. Install Copy Dynet.py to your project. Run the example Install matpl

Anik Patel 4 Dec 05, 2021
ThunderGBM: Fast GBDTs and Random Forests on GPUs

Documentations | Installation | Parameters | Python (scikit-learn) interface What's new? ThunderGBM won 2019 Best Paper Award from IEEE Transactions o

Xtra Computing Group 648 Dec 16, 2022