Dragonfly is an open source python library for scalable Bayesian optimisation.

Overview


Dragonfly is an open source python library for scalable Bayesian optimisation.

Bayesian optimisation is used for optimising black-box functions whose evaluations are usually expensive. Beyond vanilla optimisation techniques, Dragonfly provides an array of tools to scale up Bayesian optimisation to expensive large scale problems. These include features/functionality that are especially suited for high dimensional optimisation (optimising for a large number of variables), parallel evaluations in synchronous or asynchronous settings (conducting multiple evaluations in parallel), multi-fidelity optimisation (using cheap approximations to speed up the optimisation process), and multi-objective optimisation (optimising multiple functions simultaneously).

Dragonfly is compatible with Python2 (>= 2.7) and Python3 (>= 3.5) and has been tested on Linux, macOS, and Windows platforms. For documentation, installation, and a getting started guide, see our readthedocs page. For more details, see our paper.

 

Installation

See here for detailed instructions on installing Dragonfly and its dependencies.

Quick Installation: If you have done this kind of thing before, you should be able to install Dragonfly via pip.

$ sudo apt-get install python-dev python3-dev gfortran # On Ubuntu/Debian
$ pip install numpy
$ pip install dragonfly-opt -v

Testing the Installation: You can import Dragonfly in python to test if it was installed properly. If you have installed via source, make sure that you move to a different directory to avoid naming conflicts.

$ python
>>> from dragonfly import minimise_function
>>> # The first argument below is the function, the second is the domain, and the third is the budget.
>>> min_val, min_pt, history = minimise_function(lambda x: x ** 4 - x**2 + 0.1 * x, [[-10, 10]], 10);  
...
>>> min_val, min_pt
(-0.32122746026750953, array([-0.7129672]))

Due to stochasticity in the algorithms, the above values for min_val, min_pt may be different. If you run it for longer (e.g. min_val, min_pt, history = minimise_function(lambda x: x ** 4 - x**2 + 0.1 * x, [[-10, 10]], 100)), you should get more consistent values for the minimum.

If the installation fails or if there are warning messages, see detailed instructions here.

 

Quick Start

Dragonfly can be used directly in the command line by calling dragonfly-script.py or be imported in python code via the maximise_function function in the main library or in ask-tell mode. To help get started, we have provided some examples in the examples directory. See our readthedocs getting started pages (command line, Python, Ask-Tell) for examples and use cases.

Command line: Below is an example usage in the command line.

$ cd examples
$ dragonfly-script.py --config synthetic/branin/config.json --options options_files/options_example.txt

In Python code: The main APIs for Dragonfly are defined in dragonfly/apis. For their definitions and arguments, see dragonfly/apis/opt.py and dragonfly/apis/moo.py. You can import the main API in python code via,

from dragonfly import minimise_function, maximise_function
func = lambda x: x ** 4 - x**2 + 0.1 * x
domain = [[-10, 10]]
max_capital = 100
min_val, min_pt, history = minimise_function(func, domain, max_capital)
print(min_val, min_pt)
max_val, max_pt, history = maximise_function(lambda x: -func(x), domain, max_capital)
print(max_val, max_pt)

Here, func is the function to be maximised, domain is the domain over which func is to be optimised, and max_capital is the capital available for optimisation. The domain can be specified via a JSON file or in code. See here, here, here, here, here, here, here, here, here, here, and here for more detailed examples.

In Ask-Tell Mode: Ask-tell mode provides you more control over your experiments where you can supply past results to our API in order to obtain a recommendation. See the following example for more details.

For a comprehensive list of uses cases, including multi-objective optimisation, multi-fidelity optimisation, neural architecture search, and other optimisation methods (besides Bayesian optimisation), see our readthe docs pages (command line, Python, Ask-Tell)).

 

Contributors

Kirthevasan Kandasamy: github, webpage
Karun Raju Vysyaraju: github, linkedin
Anthony Yu: github, linkedin
Willie Neiswanger: github, webpage
Biswajit Paria: github, webpage
Chris Collins: github, webpage

Acknowledgements

Research and development of the methods in this package were funded by DOE grant DESC0011114, NSF grant IIS1563887, the DARPA D3M program, and AFRL.

Citation

If you use any part of this code in your work, please cite our JMLR paper.

@article{JMLR:v21:18-223,
  author  = {Kirthevasan Kandasamy and Karun Raju Vysyaraju and Willie Neiswanger and Biswajit Paria and Christopher R. Collins and Jeff Schneider and Barnabas Poczos and Eric P. Xing},
  title   = {Tuning Hyperparameters without Grad Students: Scalable and Robust Bayesian Optimisation with Dragonfly},
  journal = {Journal of Machine Learning Research},
  year    = {2020},
  volume  = {21},
  number  = {81},
  pages   = {1-27},
  url     = {http://jmlr.org/papers/v21/18-223.html}
}

License

This software is released under the MIT license. For more details, please refer LICENSE.txt.

For questions, please email [email protected].

"Copyright 2018-2019 Kirthevasan Kandasamy"

Convoys is a simple library that fits a few statistical model useful for modeling time-lagged conversions.

Convoys is a simple library that fits a few statistical model useful for modeling time-lagged conversions. There is a lot more info if you head over to the documentation. You can also take a look at

Better 240 Dec 26, 2022
Code base of KU AIRS: SPARK Autonomous Vehicle Team

KU AIRS: SPARK Autonomous Vehicle Project Check this link for the blog post describing this project and the video of SPARK in simulation and on parkou

Mehmet Enes Erciyes 1 Nov 23, 2021
MooGBT is a library for Multi-objective optimization in Gradient Boosted Trees.

MooGBT is a library for Multi-objective optimization in Gradient Boosted Trees. MooGBT optimizes for multiple objectives by defining constraints on sub-objective(s) along with a primary objective. Th

Swiggy 66 Dec 06, 2022
MegFlow - Efficient ML solutions for long-tailed demands.

Efficient ML solutions for long-tailed demands.

旷视天元 MegEngine 371 Dec 21, 2022
Machine Learning Algorithms ( Desion Tree, XG Boost, Random Forest )

implementation of machine learning Algorithms such as decision tree and random forest and xgboost on darasets then compare results for each and implement ant colony and genetic algorithms on tsp map,

Mohamadreza Rezaei 1 Jan 19, 2022
Greykite: A flexible, intuitive and fast forecasting library

The Greykite library provides flexible, intuitive and fast forecasts through its flagship algorithm, Silverkite.

LinkedIn 1.4k Jan 15, 2022
PySurvival is an open source python package for Survival Analysis modeling

PySurvival What is Pysurvival ? PySurvival is an open source python package for Survival Analysis modeling - the modeling concept used to analyze or p

Square 265 Dec 27, 2022
Dragonfly is an open source python library for scalable Bayesian optimisation.

Dragonfly is an open source python library for scalable Bayesian optimisation. Bayesian optimisation is used for optimising black-box functions whose

744 Jan 02, 2023
ML Optimizers from scratch using JAX

Toy implementations of some popular ML optimizers using Python/JAX

Shreyansh Singh 38 Jul 29, 2022
Simple and flexible ML workflow engine.

This is a simple and flexible ML workflow engine. It helps to orchestrate events across a set of microservices and create executable flow to handle requests. Engine is designed to be configurable wit

Katana ML 295 Jan 06, 2023
Combines Bayesian analyses from many datasets.

PosteriorStacker Combines Bayesian analyses from many datasets. Introduction Method Tutorial Output plot and files Introduction Fitting a model to a d

Johannes Buchner 19 Feb 13, 2022
PyPOTS - A Python Toolbox for Data Mining on Partially-Observed Time Series

A python toolbox/library for data mining on partially-observed time series, supporting tasks of forecasting/imputation/classification/clustering on incomplete multivariate time series with missing va

Wenjie Du 179 Dec 31, 2022
Machine Learning approach for quantifying detector distortion fields

DistortionML Machine Learning approach for quantifying detector distortion fields. This project is a feasibility study for training a surrogate model

Joel Bernier 1 Nov 05, 2021
Titanic Traveller Survivability Prediction

The aim of the mini project is predict whether or not a passenger survived based on attributes such as their age, sex, passenger class, where they embarked and more.

John Phillip 0 Jan 20, 2022
Xeasy-ml is a packaged machine learning framework.

xeasy-ml 1. What is xeasy-ml Xeasy-ml is a packaged machine learning framework. It allows a beginner to quickly build a machine learning model and use

9 Mar 14, 2022
distfit - Probability density fitting

Python package for probability density function fitting of univariate distributions of non-censored data

Erdogan Taskesen 187 Dec 30, 2022
Fast Fourier Transform-accelerated Interpolation-based t-SNE (FIt-SNE)

FFT-accelerated Interpolation-based t-SNE (FIt-SNE) Introduction t-Stochastic Neighborhood Embedding (t-SNE) is a highly successful method for dimensi

Kluger Lab 547 Dec 21, 2022
Multiple Linear Regression using the LinearRegression class from sklearn.linear_model library

Multiple-Linear-Regression-master - A python program to implement Multiple Linear Regression using the LinearRegression class from sklearn.linear model library

Kushal Shingote 1 Feb 06, 2022
GAM timeseries modeling with auto-changepoint detection. Inspired by Facebook Prophet and implemented in PyMC3

pm-prophet Pymc3-based universal time series prediction and decomposition library (inspired by Facebook Prophet). However, while Faceook prophet is a

Luca Giacomel 314 Dec 25, 2022
Machine Learning Course with Python:

A Machine Learning Course with Python Table of Contents Download Free Deep Learning Resource Guide Slack Group Introduction Motivation Machine Learnin

Instill AI 6.9k Jan 03, 2023