Dragonfly is an open source python library for scalable Bayesian optimisation.

Overview


Dragonfly is an open source python library for scalable Bayesian optimisation.

Bayesian optimisation is used for optimising black-box functions whose evaluations are usually expensive. Beyond vanilla optimisation techniques, Dragonfly provides an array of tools to scale up Bayesian optimisation to expensive large scale problems. These include features/functionality that are especially suited for high dimensional optimisation (optimising for a large number of variables), parallel evaluations in synchronous or asynchronous settings (conducting multiple evaluations in parallel), multi-fidelity optimisation (using cheap approximations to speed up the optimisation process), and multi-objective optimisation (optimising multiple functions simultaneously).

Dragonfly is compatible with Python2 (>= 2.7) and Python3 (>= 3.5) and has been tested on Linux, macOS, and Windows platforms. For documentation, installation, and a getting started guide, see our readthedocs page. For more details, see our paper.

 

Installation

See here for detailed instructions on installing Dragonfly and its dependencies.

Quick Installation: If you have done this kind of thing before, you should be able to install Dragonfly via pip.

$ sudo apt-get install python-dev python3-dev gfortran # On Ubuntu/Debian
$ pip install numpy
$ pip install dragonfly-opt -v

Testing the Installation: You can import Dragonfly in python to test if it was installed properly. If you have installed via source, make sure that you move to a different directory to avoid naming conflicts.

$ python
>>> from dragonfly import minimise_function
>>> # The first argument below is the function, the second is the domain, and the third is the budget.
>>> min_val, min_pt, history = minimise_function(lambda x: x ** 4 - x**2 + 0.1 * x, [[-10, 10]], 10);  
...
>>> min_val, min_pt
(-0.32122746026750953, array([-0.7129672]))

Due to stochasticity in the algorithms, the above values for min_val, min_pt may be different. If you run it for longer (e.g. min_val, min_pt, history = minimise_function(lambda x: x ** 4 - x**2 + 0.1 * x, [[-10, 10]], 100)), you should get more consistent values for the minimum.

If the installation fails or if there are warning messages, see detailed instructions here.

 

Quick Start

Dragonfly can be used directly in the command line by calling dragonfly-script.py or be imported in python code via the maximise_function function in the main library or in ask-tell mode. To help get started, we have provided some examples in the examples directory. See our readthedocs getting started pages (command line, Python, Ask-Tell) for examples and use cases.

Command line: Below is an example usage in the command line.

$ cd examples
$ dragonfly-script.py --config synthetic/branin/config.json --options options_files/options_example.txt

In Python code: The main APIs for Dragonfly are defined in dragonfly/apis. For their definitions and arguments, see dragonfly/apis/opt.py and dragonfly/apis/moo.py. You can import the main API in python code via,

from dragonfly import minimise_function, maximise_function
func = lambda x: x ** 4 - x**2 + 0.1 * x
domain = [[-10, 10]]
max_capital = 100
min_val, min_pt, history = minimise_function(func, domain, max_capital)
print(min_val, min_pt)
max_val, max_pt, history = maximise_function(lambda x: -func(x), domain, max_capital)
print(max_val, max_pt)

Here, func is the function to be maximised, domain is the domain over which func is to be optimised, and max_capital is the capital available for optimisation. The domain can be specified via a JSON file or in code. See here, here, here, here, here, here, here, here, here, here, and here for more detailed examples.

In Ask-Tell Mode: Ask-tell mode provides you more control over your experiments where you can supply past results to our API in order to obtain a recommendation. See the following example for more details.

For a comprehensive list of uses cases, including multi-objective optimisation, multi-fidelity optimisation, neural architecture search, and other optimisation methods (besides Bayesian optimisation), see our readthe docs pages (command line, Python, Ask-Tell)).

 

Contributors

Kirthevasan Kandasamy: github, webpage
Karun Raju Vysyaraju: github, linkedin
Anthony Yu: github, linkedin
Willie Neiswanger: github, webpage
Biswajit Paria: github, webpage
Chris Collins: github, webpage

Acknowledgements

Research and development of the methods in this package were funded by DOE grant DESC0011114, NSF grant IIS1563887, the DARPA D3M program, and AFRL.

Citation

If you use any part of this code in your work, please cite our JMLR paper.

@article{JMLR:v21:18-223,
  author  = {Kirthevasan Kandasamy and Karun Raju Vysyaraju and Willie Neiswanger and Biswajit Paria and Christopher R. Collins and Jeff Schneider and Barnabas Poczos and Eric P. Xing},
  title   = {Tuning Hyperparameters without Grad Students: Scalable and Robust Bayesian Optimisation with Dragonfly},
  journal = {Journal of Machine Learning Research},
  year    = {2020},
  volume  = {21},
  number  = {81},
  pages   = {1-27},
  url     = {http://jmlr.org/papers/v21/18-223.html}
}

License

This software is released under the MIT license. For more details, please refer LICENSE.txt.

For questions, please email [email protected].

"Copyright 2018-2019 Kirthevasan Kandasamy"

Auto updating website that tracks closed & open issues/PRs on scikit-learn/scikit-learn.

Repository Status for Scikit-learn Live webpage Auto updating website that tracks closed & open issues/PRs on scikit-learn/scikit-learn. Running local

Thomas J. Fan 6 Dec 27, 2022
Python 3.6+ toolbox for submitting jobs to Slurm

Submit it! What is submitit? Submitit is a lightweight tool for submitting Python functions for computation within a Slurm cluster. It basically wraps

Facebook Incubator 768 Jan 03, 2023
A flexible CTF contest platform for coming PKU GeekGame events

Project Guiding Star: the Backend A flexible CTF contest platform for coming PKU GeekGame events Still in early development Highlights Not configurabl

PKU GeekGame 14 Dec 15, 2022
Microsoft contributing libraries, tools, recipes, sample codes and workshop contents for machine learning & deep learning.

Microsoft contributing libraries, tools, recipes, sample codes and workshop contents for machine learning & deep learning.

Microsoft 366 Jan 03, 2023
Firebase + Cloudrun + Machine learning

A simple end to end consumer lending decision engine powered by Google Cloud Platform (firebase hosting and cloudrun)

Emmanuel Ogunwede 8 Aug 16, 2022
Exemplary lightweight and ready-to-deploy machine learning project

Exemplary lightweight and ready-to-deploy machine learning project

snapADDY GmbH 6 Dec 20, 2022
TIANCHI Purchase Redemption Forecast Challenge

TIANCHI Purchase Redemption Forecast Challenge

Haorui HE 4 Aug 26, 2022
This machine-learning algorithm takes in data from the last 60 days and tries to predict tomorrow's price of any crypto you ask it.

Crypto-Currency-Predictor This machine-learning algorithm takes in data from the last 60 days and tries to predict tomorrow's price of any crypto you

Hazim Arafa 6 Dec 04, 2022
Predicting Keystrokes using an Audio Side-Channel Attack and Machine Learning

Predicting Keystrokes using an Audio Side-Channel Attack and Machine Learning My

3 Apr 10, 2022
Covid-polygraph - a set of Machine Learning-driven fact-checking tools

Covid-polygraph, a set of Machine Learning-driven fact-checking tools that aim to address the issue of misleading information related to COVID-19.

1 Apr 22, 2022
Given the names and grades for each student in a class N of students, store them in a nested list and print the name(s) of any student(s) having the second lowest grade.

Hackerank-Nested-List Given the names and grades for each student in a class N of students, store them in a nested list and print the name(s) of any s

Sangeeth Mathew John 2 Dec 14, 2021
Python module for performing linear regression for data with measurement errors and intrinsic scatter

Linear regression for data with measurement errors and intrinsic scatter (BCES) Python module for performing robust linear regression on (X,Y) data po

Rodrigo Nemmen 56 Sep 27, 2022
Projeto: Machine Learning: Linguagens de Programacao 2004-2001

Projeto: Machine Learning: Linguagens de Programacao 2004-2001 Projeto de Data Science e Machine Learning de análise de linguagens de programação de 2

Victor Hugo Negrisoli 0 Jun 29, 2021
GAM timeseries modeling with auto-changepoint detection. Inspired by Facebook Prophet and implemented in PyMC3

pm-prophet Pymc3-based universal time series prediction and decomposition library (inspired by Facebook Prophet). However, while Faceook prophet is a

Luca Giacomel 314 Dec 25, 2022
A unified framework for machine learning with time series

Welcome to sktime A unified framework for machine learning with time series We provide specialized time series algorithms and scikit-learn compatible

The Alan Turing Institute 6k Jan 06, 2023
Toolss - Automatic installer of hacking tools (ONLY FOR TERMUKS!)

Tools Автоматический установщик хакерских утилит (ТОЛЬКО ДЛЯ ТЕРМУКС!) Оригиналь

14 Jan 05, 2023
NumPy-based implementation of a multilayer perceptron (MLP)

My own NumPy-based implementation of a multilayer perceptron (MLP). Several of its components can be tuned and played with, such as layer depth and size, hidden and output layer activation functions,

1 Feb 10, 2022
Apache Spark & Python (pySpark) tutorials for Big Data Analysis and Machine Learning as IPython / Jupyter notebooks

Spark Python Notebooks This is a collection of IPython notebook/Jupyter notebooks intended to train the reader on different Apache Spark concepts, fro

Jose A Dianes 1.5k Jan 02, 2023
🚪✊Knock Knock: Get notified when your training ends with only two additional lines of code

Knock Knock A small library to get a notification when your training is complete or when it crashes during the process with two additional lines of co

Hugging Face 2.5k Jan 07, 2023
Merlion: A Machine Learning Framework for Time Series Intelligence

Merlion is a Python library for time series intelligence. It provides an end-to-end machine learning framework that includes loading and transforming data, building and training models, post-processi

Salesforce 2.8k Jan 05, 2023