UpliftML: A Python Package for Scalable Uplift Modeling

Overview

UpliftML: A Python Package for Scalable Uplift Modeling

upliftml

UpliftML is a Python package for scalable unconstrained and constrained uplift modeling from experimental data. To accommodate working with big data, the package uses PySpark and H2O models as base learners for the uplift models. Evaluation functions expect a PySpark dataframe as input.

Uplift modeling is a family of techniques for estimating the Conditional Average Treatment Effect (CATE) from experimental or observational data using machine learning. In particular, we are interested in estimating the causal effect of a treatment T on the outcome Y of an individual characterized by features X. In experimental data with binary treatments and binary outcomes, this is equivalent to estimating Pr(Y=1 | T=1, X=x) - Pr(Y=1 | T=0, X=x).

In many practical use cases the goal is to select which users to target in order to maximize the overall uplift without exceeding a specified budget or ROI constraint. In those cases, estimating uplift alone is not sufficient to make optimal decisions and we need to take into account the costs and monetary benefit incurred by the treatment.

Uplift modeling is an emerging tool for various personalization applications. Example use cases include marketing campaigns personalization and optimization, personalized pricing in e-commerce, and clinical treatment personalization.

The UpliftML library includes PySpark/H2O implementations for the following:

  • 6 metalearner approaches for uplift modeling: T-learner[1], S-learner[1], X-learner[1], R-learner[2], class variable transformation[3], transformed outcome approach[4].
  • The Retrospective Estimation[5] technique for uplift modeling under ROI constraints.
  • Uplift and iROI-based evaluation and plotting functions with bootstrapped confidence intervals. Currently implemented: ATE, ROI, iROI, CATE per category/quantile, CATE lift, Qini/AUUC curves[6], Qini/AUUC score[6], cumulative iROI curves.

For detailed information about the package, read the UpliftML documentation.

Installation

Install the latest release from PyPI:

$ pip install upliftml

Quick Start

from upliftml.models.pyspark import TLearnerEstimator
from upliftml.evaluation import estimate_and_plot_qini
from upliftml.datasets import simulate_randomized_trial
from pyspark.ml.classification import LogisticRegression


# Read/generate the dataset and convert it to Spark if needed
df_pd = simulate_randomized_trial(n=2000, p=6, sigma=1.0, binary_outcome=True)
df_spark = spark.createDataFrame(df_pd)

# Split the data into train, validation, and test sets
df_train, df_val, df_test = df_spark.randomSplit([0.5, 0.25, 0.25])

# Preprocess the datasets (for implementation of get_features_vector, see the full example notebook)
num_features = [col for col in df_spark.columns if col.startswith('feature')]
cat_features = []
df_train_assembled = get_features_vector(df_train, num_features, cat_features)
df_val_assembled = get_features_vector(df_val, num_features, cat_features)
df_test_assembled = get_features_vector(df_test, num_features, cat_features)

# Build a two-model estimator
model = TLearnerEstimator(base_model_class=LogisticRegression,
                          base_model_params={'maxIter': 15},
                          predictors_colname='features',
                          target_colname='outcome',
                          treatment_colname='treatment',
                          treatment_value=1,
                          control_value=0)
model.fit(df_train_assembled, df_val_assembled)

# Apply the model to test data
df_test_eval = model.predict(df_test_assembled)

# Evaluate performance on the test set
qini_values, ax = estimate_and_plot_qini(df_test_eval)

For complete examples with more estimators and evaluation functions, see the demo notebooks in the examples folder.

Contributing

If interested in contributing to the package, get started by reading our contributor guidelines.

License

The project is licensed under Apache 2.0 License

Citation

If you use UpliftML, please cite it as follows:

Irene Teinemaa, Javier Albert, Nam Pham. UpliftML: A Python Package for Scalable Uplift Modeling. https://github.com/bookingcom/upliftml, 2021. Version 0.0.1.

@misc{upliftml,
  author={Irene Teinemaa, Javier Albert, Nam Pham},
  title={{UpliftML}: {A Python Package for Scalable Uplift Modeling}},
  howpublished={https://github.com/bookingcom/upliftml},
  note={Version 0.0.1},
  year={2021}
}

Resources

Documentation:

Tutorials and blog posts:

Related packages:

  • CausalML: a Python package for uplift modeling and causal inference with machine learning
  • EconML: a Python package for estimating heterogeneous treatment effects from observational data via machine learning

References

  1. Sören R. Künzel, Jasjeet S. Sekhon, Peter J. Bickel, and Bin Yu. Metalearners for estimating heterogeneous treatment effects using machine learning. Proceedings of the National Academy of Sciences, 2019.
  2. Xinkun Nie and Stefan Wager. Quasi-oracle estimation of heterogeneous treatment effects. arXiv preprint arXiv:1712.04912, 2017.
  3. Maciej Jaskowski and Szymon Jaroszewicz. Uplift modeling for clinical trial data. ICML Workshop on Clinical Data Analysis, 2012.
  4. Susan Athey and Guido W. Imbens. Machine learning methods for estimating heterogeneous causal effects. stat, 1050(5), 2015.
  5. Dmitri Goldenberg, Javier Albert, Lucas Bernardi, Pablo Estevez Castillo. Free Lunch! Retrospective Uplift Modeling for Dynamic Promotions Recommendation within ROI Constraints. In Fourteenth ACM Conference on Recommender Systems (pp. 486-491), 2020.
  6. Nicholas J Radcliffe and Patrick D Surry. Real-world uplift modelling with significance based uplift trees. White Paper tr-2011-1, Stochastic Solutions, 2011.
Owner
Booking.com
Open source projects and forks of projects we use internally (for better upstream collaboration)
Booking.com
About Solve CTF offline disconnection problem - based on python3's small crawler

About Solve CTF offline disconnection problem - based on python3's small crawler, support keyword search and local map bed establishment, currently support Jianshu, xianzhi,anquanke,freebuf,seebug

天河 32 Oct 25, 2022
scikit-learn: machine learning in Python

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license. The project was started

neurodata 3 Dec 16, 2022
李航《统计学习方法》复现

本项目复现李航《统计学习方法》每一章节的算法 特点: 笔记摘要:在每个文件开头都会有一些核心的摘要 pythonic:这里会用尽可能规范的方式来实现,包括编程风格几乎严格按照PEP8 循序渐进:前期的算法会更list的方式来做计算,可读性比较强,后期几乎完全为numpy.array的计算,并且辅助详

58 Oct 22, 2021
pywFM is a Python wrapper for Steffen Rendle's factorization machines library libFM

pywFM pywFM is a Python wrapper for Steffen Rendle's libFM. libFM is a Factorization Machine library: Factorization machines (FM) are a generic approa

João Ferreira Loff 251 Sep 23, 2022
pandas, scikit-learn, xgboost and seaborn integration

pandas, scikit-learn and xgboost integration.

299 Dec 30, 2022
PyHarmonize: Adding harmony lines to recorded melodies in Python

PyHarmonize: Adding harmony lines to recorded melodies in Python About To use this module, the user provides a wav file containing a melody, the key i

Julian Kappler 2 May 20, 2022
30 Days Of Machine Learning Using Pytorch

Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

Mayur 119 Nov 24, 2022
Banpei is a Python package of the anomaly detection.

Banpei Banpei is a Python package of the anomaly detection. Anomaly detection is a technique used to identify unusual patterns that do not conform to

Hirofumi Tsuruta 282 Jan 03, 2023
Mortality risk prediction for COVID-19 patients using XGBoost models

Mortality risk prediction for COVID-19 patients using XGBoost models Using demographic and lab test data received from the HM Hospitales in Spain, I b

1 Jan 19, 2022
A Tools that help Data Scientists and ML engineers train and deploy ML models.

Domino Research This repo contains projects under active development by the Domino R&D team. We build tools that help Data Scientists and ML engineers

Domino Data Lab 73 Oct 17, 2022
A basic Ray Tracer that exploits numpy arrays and functions to work fast.

Python-Fast-Raytracer A basic Ray Tracer that exploits numpy arrays and functions to work fast. The code is written keeping as much readability as pos

Rafael de la Fuente 393 Dec 27, 2022
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Dec 22, 2022
using Machine Learning Algorithm to classification AppleStore application

AppleStore-classification-with-Machine-learning-Algo- using Machine Learning Algorithm to classification AppleStore application. the first step : 1: p

Mohammed Hussien 2 May 02, 2022
Gaussian Process Optimization using GPy

End of maintenance for GPyOpt Dear GPyOpt community! We would like to acknowledge the obvious. The core team of GPyOpt has moved on, and over the past

Sheffield Machine Learning Software 847 Dec 19, 2022
Open source time series library for Python

PyFlux PyFlux is an open source time series library for Python. The library has a good array of modern time series models, as well as a flexible array

Ross Taylor 2k Jan 02, 2023
A Python package for time series classification

pyts: a Python package for time series classification pyts is a Python package for time series classification. It aims to make time series classificat

Johann Faouzi 1.4k Jan 01, 2023
scikit-multimodallearn is a Python package implementing algorithms multimodal data.

scikit-multimodallearn is a Python package implementing algorithms multimodal data. It is compatible with scikit-learn, a popul

12 Jun 29, 2022
Scikit-Learn useful pre-defined Pipelines Hub

Scikit-Pipes Scikit-Learn useful pre-defined Pipelines Hub Usage: Install scikit-pipes It's advised to install sklearn-genetic using a virtual env, in

Rodrigo Arenas 1 Apr 26, 2022
Python Machine Learning Jupyter Notebooks (ML website)

Python Machine Learning Jupyter Notebooks (ML website) Dr. Tirthajyoti Sarkar, Fremont, California (Please feel free to connect on LinkedIn here) Also

Tirthajyoti Sarkar 2.6k Jan 03, 2023
Simple, fast, and parallelized symbolic regression in Python/Julia via regularized evolution and simulated annealing

Parallelized symbolic regression built on Julia, and interfaced by Python. Uses regularized evolution, simulated annealing, and gradient-free optimization.

Miles Cranmer 924 Jan 03, 2023