Stacked Generalization (Ensemble Learning)

Overview

Stacking (stacked generalization)

PyPI version license

Overview

ikki407/stacking - Simple and useful stacking library, written in Python.

User can use models of scikit-learn, XGboost, and Keras for stacking.
As a feature of this library, all out-of-fold predictions can be saved for further analisys after training.

Description

Stacking (sometimes called stacked generalization) involves training a learning algorithm to combine the predictions of several other learning algorithms. The basic idea is to use a pool of base classifiers, then using another classifier to combine their predictions, with the aim of reducing the generalization error.

This blog is very helpful to understand stacking and ensemble learning.

Usage

See working example:

To run these examples, just run sh run.sh. Note that:

  1. Set train and test dataset under data/input

  2. Created features from original dataset need to be under data/output/features

  3. Models for stacking are defined in scripts.py under scripts folder

  4. Need to define created features in that scripts

  5. Just run sh run.sh (python scripts/XXX.py).

Detailed Usage

  1. Set train dataset with its target data and test dataset.

    FEATURE_LIST_stage1 = {
                    'train':(
                             INPUT_PATH + 'train.csv',
                             FEATURES_PATH + 'train_log.csv',
                            ),
    
                    'target':(
                             INPUT_PATH + 'target.csv',
                            ),
    
                    'test':(
                             INPUT_PATH + 'test.csv',
                             FEATURES_PATH + 'test_log.csv',
                            ),
                    }
  2. Define model classes that inherit BaseModel class, which are used in Stage 1, Stage 2, ..., Stage N.

    # For Stage 1
    PARAMS_V1 = {
            'colsample_bytree':0.80,
            'learning_rate':0.1,"eval_metric":"auc",
            'max_depth':5, 'min_child_weight':1,
            'nthread':4,
            'objective':'binary:logistic','seed':407,
            'silent':1, 'subsample':0.60,
            }
    
    class ModelV1(BaseModel):
            def build_model(self):
                return XGBClassifier(params=self.params, num_round=10)
    
    ...
    
    # For Stage 2
    PARAMS_V1_stage2 = {
                        'penalty':'l2',
                        'tol':0.0001, 
                        'C':1.0, 
                        'random_state':None, 
                        'verbose':0, 
                        'n_jobs':8
                        }
    
    class ModelV1_stage2(BaseModel):
            def build_model(self):
                return LR(**self.params)
  3. Train each models of Stage 1 for stacking.

    m = ModelV1(name="v1_stage1",
                flist=FEATURE_LIST_stage1,
                params = PARAMS_V1,
                kind = 'st'
                )
    m.run()
    
    ...
  4. Train each model(s) of Stage 2 by using the prediction of Stage-1 models.

    FEATURE_LIST_stage2 = {
                'train': (
                         TEMP_PATH + 'v1_stage1_all_fold.csv',
                         TEMP_PATH + 'v2_stage1_all_fold.csv',
                         TEMP_PATH + 'v3_stage1_all_fold.csv',
                         TEMP_PATH + 'v4_stage1_all_fold.csv',
                         ...
                         ),
    
                'target':(
                         INPUT_PATH + 'target.csv',
                         ),
    
                'test': (
                        TEMP_PATH + 'v1_stage1_test.csv',
                        TEMP_PATH + 'v2_stage1_test.csv',
                        TEMP_PATH + 'v3_stage1_test.csv',
                        TEMP_PATH + 'v4_stage1_test.csv',
                        ...                     
                        ),
                }
    
    # Models
    m = ModelV1_stage2(name="v1_stage2",
                    flist=FEATURE_LIST_stage2,
                    params = PARAMS_V1_stage2,
                    kind = 'st',
                    )
    m.run()
  5. Final result is saved as v1_stage2_TestInAllTrainingData.csv.

Prerequisite

  • (MaxOS) Install xgboost first manually: pip install xgboost
  • (Optional) Install paratext: fast csv loading library

Installation

To install stacking, cd to the stacking folder and run the install command**(up-to-date version, recommended)**:

sudo python setup.py install

You can also install stacking from PyPI:

pip install stacking

Files

Details of scripts

  • base.py:
    • Base models for stacking are defined here (using sklearn.base.BaseEstimator).
    • Some models are defined here. e.g., XGBoost, Keras, Vowpal Wabbit.
    • These models are wrapped as scikit-learn like (using sklearn.base.ClassifierMixin, sklearn.base.RegressorMixin).
    • That is, model class has some methods, fit(), predict_proba(), and predict().

New user-defined models can be added here.

Scikit-learn models can be used.

Base model have some arguments.

  • 's': Stacking. Saving oof(out-of-fold) prediction({model_name}_all_fold.csv) and average of test prediction based on train-fold models({model_name}_test.csv). These files will be used for next level stacking.

  • 't': Training with all data and predict test({model_name}_TestInAllTrainingData.csv). In this training, no validation data are used.

  • 'st': Stacking and then training with all data and predict test ('s' and 't').

  • 'cv': Only cross validation without saving the prediction.

Define several models and its parameters used for stacking. Define task details on the top of script. Train and test feature set are defined here. Need to define CV-fold index.

Any level stacking can be defined.

PredictionFiles

Reference

[1] Wolpert, David H. Stacked generalization, Neural Networks, 5(2), 241-259

[2] Ensemble learning(Stacking)

[3] KAGGLE ENSEMBLING GUIDE

Owner
Ikki Tanaka
Data Scientist, Machine Learning/Reinforcement Learning Engineer. Kaggle Master.
Ikki Tanaka
Reggy - Regressions with arbitrarily complex regularization terms

reggy Regressions with arbitrarily complex regularization terms. Currently suppo

Kim 1 Jan 20, 2022
BioPy is a collection (in-progress) of biologically-inspired algorithms written in Python

BioPy is a collection (in-progress) of biologically-inspired algorithms written in Python. Some of the algorithms included are mor

Jared M. Smith 40 Aug 26, 2022
A simple python program which predicts the success of a movie based on it's type, actor, actress and director

Movie-Success-Prediction A simple python program which predicts the success of a movie based on it's type, actor, actress and director. The program us

Mahalinga Prasad R N 1 Dec 17, 2021
High performance implementation of Extreme Learning Machines (fast randomized neural networks).

High Performance toolbox for Extreme Learning Machines. Extreme learning machines (ELM) are a particular kind of Artificial Neural Networks, which sol

Anton Akusok 174 Dec 07, 2022
Toolss - Automatic installer of hacking tools (ONLY FOR TERMUKS!)

Tools Автоматический установщик хакерских утилит (ТОЛЬКО ДЛЯ ТЕРМУКС!) Оригиналь

14 Jan 05, 2023
A simple example of ML classification, cross validation, and visualization of feature importances

Simple-Classifier This is a basic example of how to use several different libraries for classification and ensembling, mostly with sklearn. Example as

Rob 2 Aug 25, 2022
Python package for machine learning for healthcare using a OMOP common data model

This library was developed in order to facilitate rapid prototyping in Python of predictive machine-learning models using longitudinal medical data from an OMOP CDM-standard database.

Sontag Lab 75 Jan 03, 2023
easyNeuron is a simple way to create powerful machine learning models, analyze data and research cutting-edge AI.

easyNeuron is a simple way to create powerful machine learning models, analyze data and research cutting-edge AI.

Neuron AI 5 Jun 18, 2022
Can a machine learning project be implemented to estimate the salaries of baseball players whose salary information and career statistics for 1986 are shared?

END TO END MACHINE LEARNING PROJECT ON HITTERS DATASET Can a machine learning project be implemented to estimate the salaries of baseball players whos

Pinar Oner 7 Dec 18, 2021
Skforecast is a python library that eases using scikit-learn regressors as multi-step forecasters

Skforecast is a python library that eases using scikit-learn regressors as multi-step forecasters. It also works with any regressor compatible with the scikit-learn API (pipelines, CatBoost, LightGBM

Joaquín Amat Rodrigo 297 Jan 09, 2023
A high performance and generic framework for distributed DNN training

BytePS BytePS is a high performance and general distributed training framework. It supports TensorFlow, Keras, PyTorch, and MXNet, and can run on eith

Bytedance Inc. 3.3k Dec 28, 2022
This repo implements a Topological SLAM: Deep Visual Odometry with Long Term Place Recognition (Loop Closure Detection)

This repo implements a topological SLAM system. Deep Visual Odometry (DF-VO) and Visual Place Recognition are combined to form the topological SLAM system.

Best of Australian Centre for Robotic Vision (ACRV) 32 Jun 23, 2022
🎛 Distributed machine learning made simple.

🎛 lazycluster Distributed machine learning made simple. Use your preferred distributed ML framework like a lazy engineer. Getting Started • Highlight

Machine Learning Tooling 44 Nov 27, 2022
This project impelemented for midterm of the Machine Learning #Zoomcamp #Alexey Grigorev

MLProject_01 This project impelemented for midterm of the Machine Learning #Zoomcamp #Alexey Grigorev Context Dataset English question data set file F

Hadi Nakhi 1 Dec 18, 2021
Decentralized deep learning in PyTorch. Built to train models on thousands of volunteers across the world.

Hivemind: decentralized deep learning in PyTorch Hivemind is a PyTorch library to train large neural networks across the Internet. Its intended usage

1.3k Jan 08, 2023
Learn Machine Learning Algorithms by doing projects in Python and R Programming Language

Learn Machine Learning Algorithms by doing projects in Python and R Programming Language. This repo covers all aspect of Machine Learning Algorithms.

Ravi Chaubey 6 Oct 20, 2022
🤖 ⚡ scikit-learn tips

🤖 ⚡ scikit-learn tips New tips are posted on LinkedIn, Twitter, and Facebook. 👉 Sign up to receive 2 video tips by email every week! 👈 List of all

Kevin Markham 1.6k Jan 03, 2023
Deepchecks is a Python package for comprehensively validating your machine learning models and data with minimal effort

Deepchecks is a Python package for comprehensively validating your machine learning models and data with minimal effort

2.3k Jan 04, 2023
neurodsp is a collection of approaches for applying digital signal processing to neural time series

neurodsp is a collection of approaches for applying digital signal processing to neural time series, including algorithms that have been proposed for the analysis of neural time series. It also inclu

NeuroDSP 224 Dec 02, 2022
Simulate & classify transient absorption spectroscopy (TAS) spectral features for bulk semiconducting materials (Post-DFT)

PyTASER PyTASER is a Python (3.9+) library and set of command-line tools for classifying spectral features in bulk materials, post-DFT. The goal of th

Materials Design Group 4 Dec 27, 2022