A Powerful Serverless Analysis Toolkit That Takes Trial And Error Out of Machine Learning Projects

Overview


KXY: A Seemless API to 10x The Productivity of Machine Learning Engineers

License PyPI Latest Release Downloads

Documentation

https://www.kxy.ai/reference/

Installation

From PyPi:

pip install kxy

From GitHub:

git clone https://github.com/kxytechnologies/kxy-python.git & cd ./kxy-python & pip install .

Authentication

All heavy-duty computations are run on our serverless infrastructure and require an API key. To configure the package with your API key, run

kxy configure

and follow the instructions. To get an API key you need an account; you can sign up for a free trial here. You'll then be automatically given an API key which you can find here.

KXY is free for academic use.

Docker

The Docker image kxytechnologies/kxy has been built for your convenience, and comes with anaconda, auto-sklearn, and the kxy package.

To start a Jupyter Notebook server from a sandboxed Docker environment, run

&& /opt/conda/bin/jupyter notebook --notebook-dir=/opt/notebooks --ip='*' --port=8888 --no-browser --allow-root --NotebookApp.token=''" ">
docker run -i -t -p 5555:8888 kxytechnologies/kxy:latest /bin/bash -c "kxy configure 
   
     && /opt/conda/bin/jupyter notebook --notebook-dir=/opt/notebooks --ip='*' --port=8888 --no-browser --allow-root --NotebookApp.token=''
    "
   

where you should replace with your API key and navigate to http://localhost:5555 in your browser. This docker environment comes with all examples available on the documentation website.

To start a Jupyter Notebook server from an existing directory of notebooks, run

&& /opt/conda/bin/jupyter notebook --notebook-dir=/opt/notebooks --ip='*' --port=8888 --no-browser --allow-root --NotebookApp.token=''" ">
docker run -i -t --mount src=</path/to/your/local/dir>,target=/opt/notebooks,type=bind -p 5555:8888 kxytechnologies/kxy:latest /bin/bash -c "kxy configure 
   
     && /opt/conda/bin/jupyter notebook --notebook-dir=/opt/notebooks --ip='*' --port=8888 --no-browser --allow-root --NotebookApp.token=''
    "
   

where you should replace with the path to your local notebook folder and navigate to http://localhost:5555 in your browser.

Other Programming Language

We plan to release friendly API client in more programming language.

In the meantime, you can directly issue requests to our RESTFul API using your favorite programming language.

You might also like...
Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on Kubernetes simple, portable, and scalable.

SDK: Overview of the Kubeflow pipelines service Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on

Model Validation Toolkit is a collection of tools to assist with validating machine learning models prior to deploying them to production and monitoring them after deployment to production.

Model Validation Toolkit is a collection of tools to assist with validating machine learning models prior to deploying them to production and monitoring them after deployment to production.

A machine learning toolkit dedicated to time-series data

tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti

A machine learning toolkit dedicated to time-series data

tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti

Kats is a toolkit to analyze time series data, a lightweight, easy-to-use, and generalizable framework to perform time series analysis.
Kats is a toolkit to analyze time series data, a lightweight, easy-to-use, and generalizable framework to perform time series analysis.

Kats, a kit to analyze time series data, a lightweight, easy-to-use, generalizable, and extendable framework to perform time series analysis, from understanding the key statistics and characteristics, detecting change points and anomalies, to forecasting future trends.

A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.
A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.

A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.

A library of extension and helper modules for Python's data analysis and machine learning libraries.
A library of extension and helper modules for Python's data analysis and machine learning libraries.

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2021 Links Doc

A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Python Extreme Learning Machine (ELM) Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Comments
  • error in import kxy

    error in import kxy

    Hi, After installing the kxy package and configuring the API key, the import kxy shows the error below:

    .../python3.9/site-packages/kxy/pfs/pfs_selector.py in <module>
          6 import numpy as np
          7 
    ----> 8 import tensorflow as tf
          9 from tensorflow.keras.callbacks import EarlyStopping, TerminateOnNaN
         10 from tensorflow.keras.optimizers import Adam
    
    ModuleNotFoundError: No module named 'tensorflow'
    
    

    what version of tensorflow is needed for kxy to work?

    opened by zeydabadi 2
  • generate_features Documentation?

    generate_features Documentation?

    Is there any documentation on how to use the generate_features function? It doesn't appear in the documentation and I can't find it in the github. e.g. how to use the entity column, how to format time-series data in advance for it, etc'. Thanks!

    opened by ddofer 1
  • error kxy.data_valuation

    error kxy.data_valuation

    Hi, After running chievable_performance_df = X_train_reduced.kxy.data_valuation(target_column='state', problem_type='classification', include_mutual_information=True, anonymize=True) I get the following error and the function does not return anything: `During handling of the above exception, another exception occurred:

    Traceback (most recent call last): File "/usr/lib/python3.9/asyncio/tasks.py", line 258, in __step result = coro.throw(exc) File "/home/lucy/Downloads/general/lib/python3.9/site-packages/tornado/websocket.py", line 1104, in wrapper raise WebSocketClosedError() tornado.websocket.WebSocketClosedError Task exception was never retrieved future: <Task finished name='Task-46004' coro=<WebSocketProtocol13.write_message..wrapper() done, defined at /home/lucy/Downloads/general/lib/python3.9/site-packages/tornado/websocket.py:1100> exception=WebSocketClosedError()> Traceback (most recent call last): File "/home/lucy/Downloads/general/lib/python3.9/site-packages/tornado/websocket.py", line 1102, in wrapper await fut File "/usr/lib/python3.9/asyncio/tasks.py", line 328, in __wakeup future.result() tornado.iostream.StreamClosedError: Stream is closed `

    opened by zeydabadi 0
Releases(v1.4.10)
  • v1.4.10(Apr 25, 2022)

    Change Log

    v.1.4.10 Changes

    • Added a function to construct features derived from PFS mutual information estimation that should be expected to be linearly related to the target.
    • Fixed a global name conflict in kxy.learning.base_learners.

    v.1.4.9 Changes

    • Change the activation function used by PFS from ReLU to switch/SILU.
    • Leaving it to the user to set the logging level.

    v.1.4.8 Changes

    • Froze the versions of all python packages in the docker file.

    v.1.4.7 Changes

    Changes related to optimizing Principal Feature Selection.

    • Made it easy to change PFS' default learning parameters.
    • Changed PFS' default learning parameters (learning rate is now 0.005 and epsilon 1e-04)
    • Adding a seed parameter to PFS' fit for reproducibility.

    To globally change the learning rate to 0.003, change Adam's epsilon to 1e-5, and the number of epochs to 25, do

    from kxy.misc.tf import set_default_parameter
    set_default_parameter('lr', 0.003)
    set_default_parameter('epsilon', 1e-5)
    set_default_parameter('epochs', 25)
    

    To change the number epochs for a single iteration of PFS, use the epochs argument of the fit method of your PFS object. The fit method now also has a seed parameter you may use to make the PFS implementation deterministic.

    Example:

    from kxy.pfs import PFS
    selector = PFS()
    selector.fit(x, y, epochs=25, seed=123)
    

    Alternatively, you may also use the kxy.misc.tf.set_seed method to make PFS deterministic.

    v.1.4.6 Changes

    Minor PFS improvements.

    • Adding more (robust) mutual information loss functions.
    • Exposing the learned total mutual information between principal features and target as an attribute of PFS.
    • Exposing the number of epochs as a parameter of PFS' fit.
    Source code(tar.gz)
    Source code(zip)
  • v1.4.9(Apr 12, 2022)

    Change Log

    v.1.4.9 Changes

    • Change the activation function used by PFS from ReLU to switch/SILU.
    • Leaving it to the user to set the logging level.

    v.1.4.8 Changes

    • Froze the versions of all python packages in the docker file.

    v.1.4.7 Changes

    Changes related to optimizing Principal Feature Selection.

    • Made it easy to change PFS' default learning parameters.
    • Changed PFS' default learning parameters (learning rate is now 0.005 and epsilon 1e-04)
    • Adding a seed parameter to PFS' fit for reproducibility.

    To globally change the learning rate to 0.003, change Adam's epsilon to 1e-5, and the number of epochs to 25, do

    from kxy.misc.tf import set_default_parameter
    set_default_parameter('lr', 0.003)
    set_default_parameter('epsilon', 1e-5)
    set_default_parameter('epochs', 25)
    

    To change the number epochs for a single iteration of PFS, use the epochs argument of the fit method of your PFS object. The fit method now also has a seed parameter you may use to make the PFS implementation deterministic.

    Example:

    from kxy.pfs import PFS
    selector = PFS()
    selector.fit(x, y, epochs=25, seed=123)
    

    Alternatively, you may also use the kxy.misc.tf.set_seed method to make PFS deterministic.

    v.1.4.6 Changes

    Minor PFS improvements.

    • Adding more (robust) mutual information loss functions.
    • Exposing the learned total mutual information between principal features and target as an attribute of PFS.
    • Exposing the number of epochs as a parameter of PFS' fit.
    Source code(tar.gz)
    Source code(zip)
  • v1.4.8(Apr 11, 2022)

    Change Log

    v.1.4.8 Changes

    • Froze the versions of all python packages in the docker file.

    v.1.4.7 Changes

    Changes related to optimizing Principal Feature Selection.

    • Made it easy to change PFS' default learning parameters.
    • Changed PFS' default learning parameters (learning rate is now 0.005 and epsilon 1e-04)
    • Adding a seed parameter to PFS' fit for reproducibility.

    To globally change the learning rate to 0.003, change Adam's epsilon to 1e-5, and the number of epochs to 25, do

    from kxy.misc.tf import set_default_parameter
    set_default_parameter('lr', 0.003)
    set_default_parameter('epsilon', 1e-5)
    set_default_parameter('epochs', 25)
    

    To change the number epochs for a single iteration of PFS, use the epochs argument of the fit method of your PFS object. The fit method now also has a seed parameter you may use to make the PFS implementation deterministic.

    Example:

    from kxy.pfs import PFS
    selector = PFS()
    selector.fit(x, y, epochs=25, seed=123)
    

    Alternatively, you may also use the kxy.misc.tf.set_seed method to make PFS deterministic.

    v.1.4.6 Changes

    Minor PFS improvements.

    • Adding more (robust) mutual information loss functions.
    • Exposing the learned total mutual information between principal features and target as an attribute of PFS.
    • Exposing the number of epochs as a parameter of PFS' fit.
    Source code(tar.gz)
    Source code(zip)
  • v1.4.7(Apr 10, 2022)

    Change Log

    v.1.4.7 Changes

    Changes related to optimizing Principal Feature Selection.

    • Made it easy to change PFS' default learning parameters.
    • Changed PFS' default learning parameters (learning rate is now 0.005 and epsilon 1e-04)
    • Adding a seed parameter to PFS' fit for reproducibility.

    To globally change the learning rate to 0.003, change Adam's epsilon to 1e-5, and the number of epochs to 25, do

    from kxy.misc.tf import set_default_parameter
    set_default_parameter('lr', 0.003)
    set_default_parameter('epsilon', 1e-5)
    set_default_parameter('epochs', 25)
    

    To change the number epochs for a single iteration of PFS, use the epochs argument of the fit method of your PFS object. The fit method now also has a seed parameter you may use to make the PFS implementation deterministic.

    Example:

    from kxy.pfs import PFS
    selector = PFS()
    selector.fit(x, y, epochs=25, seed=123)
    

    Alternatively, you may also use the kxy.misc.tf.set_seed method to make PFS deterministic.

    v.1.4.6 Changes

    Minor PFS improvements.

    • Adding more (robust) mutual information loss functions.
    • Exposing the learned total mutual information between principal features and target as an attribute of PFS.
    • Exposing the number of epochs as a parameter of PFS' fit.
    Source code(tar.gz)
    Source code(zip)
  • v1.4.6(Apr 10, 2022)

    Changes

    • Adding more (robust) mutual information loss functions.
    • Exposing the learned total mutual information between principal features and target as an attribute of PFS.
    • Exposing the number of epochs as a parameter of PFS' fit.
    Source code(tar.gz)
    Source code(zip)
  • v1.4.5(Apr 9, 2022)

  • v1.4.4(Apr 8, 2022)

  • v0.3.2(Aug 14, 2020)

  • v0.3.0(Aug 3, 2020)

    Adding a maximum-entropy based classifier (kxy.MaxEntClassifier) and regressor (kxy.MaxEntRegressor) following the scikit-learn signature for fitting and predicting.

    These models estimate the posterior mean E[u_y|x] and the posterior standard deviation sqrt(Var[u_y|x]) for any specific value of x, where the copula-uniform representations (u_y, u_x) follow the maximum-entropy distribution.

    Predictions in the primal are derived from E[u_y|x].

    Source code(tar.gz)
    Source code(zip)
  • v0.2.0(Jun 25, 2020)

    • Regression analyses now fully support categorical variables.
    • Foundations for multi-output regressions are laid.
    • Categorical variables are now systematically encoded and treated as continuous, consistent with what's done at the learning stage.
    • Regression and classification are further normalized, and most the compute for classification problems now takes place on the API side, and should be considerably faster.
    Source code(tar.gz)
    Source code(zip)
  • v0.0.18(May 26, 2020)

  • v0.0.16(May 18, 2020)

  • v0.0.15(May 18, 2020)

  • v0.0.14(May 18, 2020)

  • v0.0.13(May 16, 2020)

  • v0.0.11(May 13, 2020)

  • v0.0.10(May 11, 2020)

Owner
KXY Technologies, Inc.
KXY Technologies, Inc.
A Python implementation of FastDTW

fastdtw Python implementation of FastDTW [1], which is an approximate Dynamic Time Warping (DTW) algorithm that provides optimal or near-optimal align

tanitter 651 Jan 04, 2023
Automatically create Faiss knn indices with the most optimal similarity search parameters.

It selects the best indexing parameters to achieve the highest recalls given memory and query speed constraints.

Criteo 419 Jan 01, 2023
Pytools is an open source library containing general machine learning and visualisation utilities for reuse

pytools is an open source library containing general machine learning and visualisation utilities for reuse, including: Basic tools for API developmen

BCG Gamma 26 Nov 06, 2022
CorrProxies - Optimizing Machine Learning Inference Queries with Correlative Proxy Models

CorrProxies - Optimizing Machine Learning Inference Queries with Correlative Proxy Models

ZhihuiYangCS 8 Jun 07, 2022
Greykite: A flexible, intuitive and fast forecasting library

The Greykite library provides flexible, intuitive and fast forecasts through its flagship algorithm, Silverkite.

LinkedIn 1.4k Jan 15, 2022
High performance implementation of Extreme Learning Machines (fast randomized neural networks).

High Performance toolbox for Extreme Learning Machines. Extreme learning machines (ELM) are a particular kind of Artificial Neural Networks, which sol

Anton Akusok 174 Dec 07, 2022
All-in-one web-based development environment for machine learning

All-in-one web-based development environment for machine learning Getting Started • Features & Screenshots • Support • Report a Bug • FAQ • Known Issu

3 Feb 03, 2021
distfit - Probability density fitting

Python package for probability density function fitting of univariate distributions of non-censored data

Erdogan Taskesen 187 Dec 30, 2022
🌲 Implementation of the Robust Random Cut Forest algorithm for anomaly detection on streams

🌲 Implementation of the Robust Random Cut Forest algorithm for anomaly detection on streams

Real-time water systems lab 416 Jan 06, 2023
Scikit-Learn useful pre-defined Pipelines Hub

Scikit-Pipes Scikit-Learn useful pre-defined Pipelines Hub Usage: Install scikit-pipes It's advised to install sklearn-genetic using a virtual env, in

Rodrigo Arenas 1 Apr 26, 2022
Python package for stacking (machine learning technique)

vecstack Python package for stacking (stacked generalization) featuring lightweight functional API and fully compatible scikit-learn API Convenient wa

Igor Ivanov 671 Dec 25, 2022
moDel Agnostic Language for Exploration and eXplanation

moDel Agnostic Language for Exploration and eXplanation Overview Unverified black box model is the path to the failure. Opaqueness leads to distrust.

Model Oriented 1.2k Jan 04, 2023
stability-selection - A scikit-learn compatible implementation of stability selection

stability-selection - A scikit-learn compatible implementation of stability selection stability-selection is a Python implementation of the stability

185 Dec 03, 2022
Anytime Learning At Macroscale

On Anytime Learning At Macroscale Learning from sequential data dumps (key) Requirements Python 3.7 Pytorch 1.9.0 Hydra 1.1.0 (pip install hydra-core

Meta Research 8 Mar 29, 2022
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective. 10x Larger Models 10x Faster Trainin

Microsoft 8.4k Dec 30, 2022
CobraML: Completely Customizable A python ML library designed to give the end user full control

CobraML: Completely Customizable What is it? CobraML is a python library built on both numpy and numba. Unlike other ML libraries CobraML gives the us

Sriram Govindan 14 Dec 19, 2021
XAI - An eXplainability toolbox for machine learning

XAI - An eXplainability toolbox for machine learning XAI is a Machine Learning library that is designed with AI explainability in its core. XAI contai

The Institute for Ethical Machine Learning 875 Dec 27, 2022
Arquivos do curso online sobre a estatística voltada para ciência de dados e aprendizado de máquina.

Estatistica para Ciência de Dados e Machine Learning Arquivos do curso online sobre a estatística voltada para ciência de dados e aprendizado de máqui

Renan Barbosa 1 Jan 10, 2022
Greykite: A flexible, intuitive and fast forecasting library

The Greykite library provides flexible, intuitive and fast forecasts through its flagship algorithm, Silverkite.

LinkedIn 1.7k Jan 04, 2023
Katana project is a template for ASAP 🚀 ML application deployment

Katana project is a FastAPI template for ASAP 🚀 ML API deployment

Mohammad Shahebaz 100 Dec 26, 2022