A Powerful Serverless Analysis Toolkit That Takes Trial And Error Out of Machine Learning Projects

Overview


KXY: A Seemless API to 10x The Productivity of Machine Learning Engineers

License PyPI Latest Release Downloads

Documentation

https://www.kxy.ai/reference/

Installation

From PyPi:

pip install kxy

From GitHub:

git clone https://github.com/kxytechnologies/kxy-python.git & cd ./kxy-python & pip install .

Authentication

All heavy-duty computations are run on our serverless infrastructure and require an API key. To configure the package with your API key, run

kxy configure

and follow the instructions. To get an API key you need an account; you can sign up for a free trial here. You'll then be automatically given an API key which you can find here.

KXY is free for academic use.

Docker

The Docker image kxytechnologies/kxy has been built for your convenience, and comes with anaconda, auto-sklearn, and the kxy package.

To start a Jupyter Notebook server from a sandboxed Docker environment, run

&& /opt/conda/bin/jupyter notebook --notebook-dir=/opt/notebooks --ip='*' --port=8888 --no-browser --allow-root --NotebookApp.token=''" ">
docker run -i -t -p 5555:8888 kxytechnologies/kxy:latest /bin/bash -c "kxy configure 
   
     && /opt/conda/bin/jupyter notebook --notebook-dir=/opt/notebooks --ip='*' --port=8888 --no-browser --allow-root --NotebookApp.token=''
    "
   

where you should replace with your API key and navigate to http://localhost:5555 in your browser. This docker environment comes with all examples available on the documentation website.

To start a Jupyter Notebook server from an existing directory of notebooks, run

&& /opt/conda/bin/jupyter notebook --notebook-dir=/opt/notebooks --ip='*' --port=8888 --no-browser --allow-root --NotebookApp.token=''" ">
docker run -i -t --mount src=</path/to/your/local/dir>,target=/opt/notebooks,type=bind -p 5555:8888 kxytechnologies/kxy:latest /bin/bash -c "kxy configure 
   
     && /opt/conda/bin/jupyter notebook --notebook-dir=/opt/notebooks --ip='*' --port=8888 --no-browser --allow-root --NotebookApp.token=''
    "
   

where you should replace with the path to your local notebook folder and navigate to http://localhost:5555 in your browser.

Other Programming Language

We plan to release friendly API client in more programming language.

In the meantime, you can directly issue requests to our RESTFul API using your favorite programming language.

You might also like...
Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on Kubernetes simple, portable, and scalable.

SDK: Overview of the Kubeflow pipelines service Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on

Model Validation Toolkit is a collection of tools to assist with validating machine learning models prior to deploying them to production and monitoring them after deployment to production.

Model Validation Toolkit is a collection of tools to assist with validating machine learning models prior to deploying them to production and monitoring them after deployment to production.

A machine learning toolkit dedicated to time-series data

tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti

A machine learning toolkit dedicated to time-series data

tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti

Kats is a toolkit to analyze time series data, a lightweight, easy-to-use, and generalizable framework to perform time series analysis.
Kats is a toolkit to analyze time series data, a lightweight, easy-to-use, and generalizable framework to perform time series analysis.

Kats, a kit to analyze time series data, a lightweight, easy-to-use, generalizable, and extendable framework to perform time series analysis, from understanding the key statistics and characteristics, detecting change points and anomalies, to forecasting future trends.

A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.
A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.

A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.

A library of extension and helper modules for Python's data analysis and machine learning libraries.
A library of extension and helper modules for Python's data analysis and machine learning libraries.

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2021 Links Doc

A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Python Extreme Learning Machine (ELM) Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Comments
  • error in import kxy

    error in import kxy

    Hi, After installing the kxy package and configuring the API key, the import kxy shows the error below:

    .../python3.9/site-packages/kxy/pfs/pfs_selector.py in <module>
          6 import numpy as np
          7 
    ----> 8 import tensorflow as tf
          9 from tensorflow.keras.callbacks import EarlyStopping, TerminateOnNaN
         10 from tensorflow.keras.optimizers import Adam
    
    ModuleNotFoundError: No module named 'tensorflow'
    
    

    what version of tensorflow is needed for kxy to work?

    opened by zeydabadi 2
  • generate_features Documentation?

    generate_features Documentation?

    Is there any documentation on how to use the generate_features function? It doesn't appear in the documentation and I can't find it in the github. e.g. how to use the entity column, how to format time-series data in advance for it, etc'. Thanks!

    opened by ddofer 1
  • error kxy.data_valuation

    error kxy.data_valuation

    Hi, After running chievable_performance_df = X_train_reduced.kxy.data_valuation(target_column='state', problem_type='classification', include_mutual_information=True, anonymize=True) I get the following error and the function does not return anything: `During handling of the above exception, another exception occurred:

    Traceback (most recent call last): File "/usr/lib/python3.9/asyncio/tasks.py", line 258, in __step result = coro.throw(exc) File "/home/lucy/Downloads/general/lib/python3.9/site-packages/tornado/websocket.py", line 1104, in wrapper raise WebSocketClosedError() tornado.websocket.WebSocketClosedError Task exception was never retrieved future: <Task finished name='Task-46004' coro=<WebSocketProtocol13.write_message..wrapper() done, defined at /home/lucy/Downloads/general/lib/python3.9/site-packages/tornado/websocket.py:1100> exception=WebSocketClosedError()> Traceback (most recent call last): File "/home/lucy/Downloads/general/lib/python3.9/site-packages/tornado/websocket.py", line 1102, in wrapper await fut File "/usr/lib/python3.9/asyncio/tasks.py", line 328, in __wakeup future.result() tornado.iostream.StreamClosedError: Stream is closed `

    opened by zeydabadi 0
Releases(v1.4.10)
  • v1.4.10(Apr 25, 2022)

    Change Log

    v.1.4.10 Changes

    • Added a function to construct features derived from PFS mutual information estimation that should be expected to be linearly related to the target.
    • Fixed a global name conflict in kxy.learning.base_learners.

    v.1.4.9 Changes

    • Change the activation function used by PFS from ReLU to switch/SILU.
    • Leaving it to the user to set the logging level.

    v.1.4.8 Changes

    • Froze the versions of all python packages in the docker file.

    v.1.4.7 Changes

    Changes related to optimizing Principal Feature Selection.

    • Made it easy to change PFS' default learning parameters.
    • Changed PFS' default learning parameters (learning rate is now 0.005 and epsilon 1e-04)
    • Adding a seed parameter to PFS' fit for reproducibility.

    To globally change the learning rate to 0.003, change Adam's epsilon to 1e-5, and the number of epochs to 25, do

    from kxy.misc.tf import set_default_parameter
    set_default_parameter('lr', 0.003)
    set_default_parameter('epsilon', 1e-5)
    set_default_parameter('epochs', 25)
    

    To change the number epochs for a single iteration of PFS, use the epochs argument of the fit method of your PFS object. The fit method now also has a seed parameter you may use to make the PFS implementation deterministic.

    Example:

    from kxy.pfs import PFS
    selector = PFS()
    selector.fit(x, y, epochs=25, seed=123)
    

    Alternatively, you may also use the kxy.misc.tf.set_seed method to make PFS deterministic.

    v.1.4.6 Changes

    Minor PFS improvements.

    • Adding more (robust) mutual information loss functions.
    • Exposing the learned total mutual information between principal features and target as an attribute of PFS.
    • Exposing the number of epochs as a parameter of PFS' fit.
    Source code(tar.gz)
    Source code(zip)
  • v1.4.9(Apr 12, 2022)

    Change Log

    v.1.4.9 Changes

    • Change the activation function used by PFS from ReLU to switch/SILU.
    • Leaving it to the user to set the logging level.

    v.1.4.8 Changes

    • Froze the versions of all python packages in the docker file.

    v.1.4.7 Changes

    Changes related to optimizing Principal Feature Selection.

    • Made it easy to change PFS' default learning parameters.
    • Changed PFS' default learning parameters (learning rate is now 0.005 and epsilon 1e-04)
    • Adding a seed parameter to PFS' fit for reproducibility.

    To globally change the learning rate to 0.003, change Adam's epsilon to 1e-5, and the number of epochs to 25, do

    from kxy.misc.tf import set_default_parameter
    set_default_parameter('lr', 0.003)
    set_default_parameter('epsilon', 1e-5)
    set_default_parameter('epochs', 25)
    

    To change the number epochs for a single iteration of PFS, use the epochs argument of the fit method of your PFS object. The fit method now also has a seed parameter you may use to make the PFS implementation deterministic.

    Example:

    from kxy.pfs import PFS
    selector = PFS()
    selector.fit(x, y, epochs=25, seed=123)
    

    Alternatively, you may also use the kxy.misc.tf.set_seed method to make PFS deterministic.

    v.1.4.6 Changes

    Minor PFS improvements.

    • Adding more (robust) mutual information loss functions.
    • Exposing the learned total mutual information between principal features and target as an attribute of PFS.
    • Exposing the number of epochs as a parameter of PFS' fit.
    Source code(tar.gz)
    Source code(zip)
  • v1.4.8(Apr 11, 2022)

    Change Log

    v.1.4.8 Changes

    • Froze the versions of all python packages in the docker file.

    v.1.4.7 Changes

    Changes related to optimizing Principal Feature Selection.

    • Made it easy to change PFS' default learning parameters.
    • Changed PFS' default learning parameters (learning rate is now 0.005 and epsilon 1e-04)
    • Adding a seed parameter to PFS' fit for reproducibility.

    To globally change the learning rate to 0.003, change Adam's epsilon to 1e-5, and the number of epochs to 25, do

    from kxy.misc.tf import set_default_parameter
    set_default_parameter('lr', 0.003)
    set_default_parameter('epsilon', 1e-5)
    set_default_parameter('epochs', 25)
    

    To change the number epochs for a single iteration of PFS, use the epochs argument of the fit method of your PFS object. The fit method now also has a seed parameter you may use to make the PFS implementation deterministic.

    Example:

    from kxy.pfs import PFS
    selector = PFS()
    selector.fit(x, y, epochs=25, seed=123)
    

    Alternatively, you may also use the kxy.misc.tf.set_seed method to make PFS deterministic.

    v.1.4.6 Changes

    Minor PFS improvements.

    • Adding more (robust) mutual information loss functions.
    • Exposing the learned total mutual information between principal features and target as an attribute of PFS.
    • Exposing the number of epochs as a parameter of PFS' fit.
    Source code(tar.gz)
    Source code(zip)
  • v1.4.7(Apr 10, 2022)

    Change Log

    v.1.4.7 Changes

    Changes related to optimizing Principal Feature Selection.

    • Made it easy to change PFS' default learning parameters.
    • Changed PFS' default learning parameters (learning rate is now 0.005 and epsilon 1e-04)
    • Adding a seed parameter to PFS' fit for reproducibility.

    To globally change the learning rate to 0.003, change Adam's epsilon to 1e-5, and the number of epochs to 25, do

    from kxy.misc.tf import set_default_parameter
    set_default_parameter('lr', 0.003)
    set_default_parameter('epsilon', 1e-5)
    set_default_parameter('epochs', 25)
    

    To change the number epochs for a single iteration of PFS, use the epochs argument of the fit method of your PFS object. The fit method now also has a seed parameter you may use to make the PFS implementation deterministic.

    Example:

    from kxy.pfs import PFS
    selector = PFS()
    selector.fit(x, y, epochs=25, seed=123)
    

    Alternatively, you may also use the kxy.misc.tf.set_seed method to make PFS deterministic.

    v.1.4.6 Changes

    Minor PFS improvements.

    • Adding more (robust) mutual information loss functions.
    • Exposing the learned total mutual information between principal features and target as an attribute of PFS.
    • Exposing the number of epochs as a parameter of PFS' fit.
    Source code(tar.gz)
    Source code(zip)
  • v1.4.6(Apr 10, 2022)

    Changes

    • Adding more (robust) mutual information loss functions.
    • Exposing the learned total mutual information between principal features and target as an attribute of PFS.
    • Exposing the number of epochs as a parameter of PFS' fit.
    Source code(tar.gz)
    Source code(zip)
  • v1.4.5(Apr 9, 2022)

  • v1.4.4(Apr 8, 2022)

  • v0.3.2(Aug 14, 2020)

  • v0.3.0(Aug 3, 2020)

    Adding a maximum-entropy based classifier (kxy.MaxEntClassifier) and regressor (kxy.MaxEntRegressor) following the scikit-learn signature for fitting and predicting.

    These models estimate the posterior mean E[u_y|x] and the posterior standard deviation sqrt(Var[u_y|x]) for any specific value of x, where the copula-uniform representations (u_y, u_x) follow the maximum-entropy distribution.

    Predictions in the primal are derived from E[u_y|x].

    Source code(tar.gz)
    Source code(zip)
  • v0.2.0(Jun 25, 2020)

    • Regression analyses now fully support categorical variables.
    • Foundations for multi-output regressions are laid.
    • Categorical variables are now systematically encoded and treated as continuous, consistent with what's done at the learning stage.
    • Regression and classification are further normalized, and most the compute for classification problems now takes place on the API side, and should be considerably faster.
    Source code(tar.gz)
    Source code(zip)
  • v0.0.18(May 26, 2020)

  • v0.0.16(May 18, 2020)

  • v0.0.15(May 18, 2020)

  • v0.0.14(May 18, 2020)

  • v0.0.13(May 16, 2020)

  • v0.0.11(May 13, 2020)

  • v0.0.10(May 11, 2020)

Owner
KXY Technologies, Inc.
KXY Technologies, Inc.
An MLOps framework to package, deploy, monitor and manage thousands of production machine learning models

Seldon Core: Blazing Fast, Industry-Ready ML An open source platform to deploy your machine learning models on Kubernetes at massive scale. Overview S

Seldon 3.5k Jan 01, 2023
Solve automatic numerical differentiation problems in one or more variables.

numdifftools The numdifftools library is a suite of tools written in _Python to solve automatic numerical differentiation problems in one or more vari

Per A. Brodtkorb 181 Dec 16, 2022
A machine learning web application for binary classification using streamlit

Machine Learning web App This is a machine learning web application for binary classification using streamlit options this application contains 3 clas

abdelhak mokri 1 Dec 20, 2021
PyPOTS - A Python Toolbox for Data Mining on Partially-Observed Time Series

A python toolbox/library for data mining on partially-observed time series, supporting tasks of forecasting/imputation/classification/clustering on incomplete multivariate time series with missing va

Wenjie Du 179 Dec 31, 2022
Mosec is a high-performance and flexible model serving framework for building ML model-enabled backend and microservices

Mosec is a high-performance and flexible model serving framework for building ML model-enabled backend and microservices. It bridges the gap between any machine learning models you just trained and t

164 Jan 04, 2023
A comprehensive set of fairness metrics for datasets and machine learning models, explanations for these metrics, and algorithms to mitigate bias in datasets and models.

AI Fairness 360 (AIF360) The AI Fairness 360 toolkit is an extensible open-source library containg techniques developed by the research community to h

1.9k Jan 06, 2023
LiuAlgoTrader is a scalable, multi-process ML-ready framework for effective algorithmic trading

LiuAlgoTrader is a scalable, multi-process ML-ready framework for effective algorithmic trading. The framework simplify development, testing, deployment, analysis and training algo trading strategies

Amichay Oren 458 Dec 24, 2022
Apache Liminal is an end-to-end platform for data engineers & scientists, allowing them to build, train and deploy machine learning models in a robust and agile way

Apache Liminals goal is to operationalise the machine learning process, allowing data scientists to quickly transition from a successful experiment to an automated pipeline of model training, validat

The Apache Software Foundation 121 Dec 28, 2022
QML: A Python Toolkit for Quantum Machine Learning

QML is a Python2/3-compatible toolkit for representation learning of properties of molecules and solids.

176 Dec 09, 2022
Simulation of early COVID-19 using SIR model and variants (SEIR ...).

COVID-19-simulation Simulation of early COVID-19 using SIR model and variants (SEIR ...). Made by the Laboratory of Sustainable Life Assessment (GYRO)

José Paulo Pereira das Dores Savioli 1 Nov 17, 2021
Ml based project which uses regression technique to predict the price.

Price-Predictor Ml based project which uses regression technique to predict the price. I have used various regression models and finds the model with

Garvit Verma 1 Jul 09, 2022
A Tools that help Data Scientists and ML engineers train and deploy ML models.

Domino Research This repo contains projects under active development by the Domino R&D team. We build tools that help Data Scientists and ML engineers

Domino Data Lab 73 Oct 17, 2022
A library to generate synthetic time series data by easy-to-use factors and generator

timeseries-generator This repository consists of a python packages that generates synthetic time series dataset in a generic way (under /timeseries_ge

Nike Inc. 87 Dec 20, 2022
Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques

Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learn

Vowpal Wabbit 8.1k Dec 30, 2022
This project impelemented for midterm of the Machine Learning #Zoomcamp #Alexey Grigorev

MLProject_01 This project impelemented for midterm of the Machine Learning #Zoomcamp #Alexey Grigorev Context Dataset English question data set file F

Hadi Nakhi 1 Dec 18, 2021
pymc-learn: Practical Probabilistic Machine Learning in Python

pymc-learn: Practical Probabilistic Machine Learning in Python Contents: Github repo What is pymc-learn? Quick Install Quick Start Index What is pymc-

pymc-learn 196 Dec 07, 2022
MLBox is a powerful Automated Machine Learning python library.

MLBox is a powerful Automated Machine Learning python library. It provides the following features: Fast reading and distributed data preprocessing/cle

Axel 1.4k Jan 06, 2023
ELI5 is a Python package which helps to debug machine learning classifiers and explain their predictions

A library for debugging/inspecting machine learning classifiers and explaining their predictions

154 Dec 17, 2022
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 03, 2023
MLReef is an open source ML-Ops platform that helps you collaborate, reproduce and share your Machine Learning work with thousands of other users.

The collaboration platform for Machine Learning MLReef is an open source ML-Ops platform that helps you collaborate, reproduce and share your Machine

MLReef 1.4k Dec 27, 2022