Implements Gradient Centralization and allows it to use as a Python package in TensorFlow

Overview

Gradient Centralization TensorFlow Twitter

PyPI Upload Python Package Flake8 Lint Python Version

Binder Open In Colab

GitHub license PEP8 GitHub stars GitHub forks GitHub watchers

This Python package implements Gradient Centralization in TensorFlow, a simple and effective optimization technique for Deep Neural Networks as suggested by Yong et al. in the paper Gradient Centralization: A New Optimization Technique for Deep Neural Networks. It can both speedup training process and improve the final generalization performance of DNNs.

Installation

Run the following to install:

pip install gradient-centralization-tf

Usage

gctf.centralized_gradients_for_optimizer

Create a centralized gradients functions for a specified optimizer.

Arguments:

  • optimizer: a tf.keras.optimizers.Optimizer object. The optimizer you are using.

Example:

>>> opt = tf.keras.optimizers.Adam(learning_rate=0.1)
>>> optimizer.get_gradients = gctf.centralized_gradients_for_optimizer(opt)
>>> model.compile(optimizer = opt, ...)

gctf.get_centralized_gradients

Computes the centralized gradients.

This function is ideally not meant to be used directly unless you are building a custom optimizer, in which case you could point get_gradients to this function. This is a modified version of tf.keras.optimizers.Optimizer.get_gradients.

Arguments:

  • optimizer: a tf.keras.optimizers.Optimizer object. The optimizer you are using.
  • loss: Scalar tensor to minimize.
  • params: List of variables.

Returns:

A gradients tensor.

gctf.optimizers

Pre built updated optimizers implementing GC.

This module is speciially built for testing out GC and in most cases you would be using gctf.centralized_gradients_for_optimizer though this module implements gctf.centralized_gradients_for_optimizer. You can directly use all optimizers with tf.keras.optimizers updated for GC.

Example:

>>> model.compile(optimizer = gctf.optimizers.adam(learning_rate = 0.01), ...)
>>> model.compile(optimizer = gctf.optimizers.rmsprop(learning_rate = 0.01, rho = 0.91), ...)
>>> model.compile(optimizer = gctf.optimizers.sgd(), ...)

Returns:

A tf.keras.optimizers.Optimizer object.

Developing gctf

To install gradient-centralization-tf, along with tools you need to develop and test, run the following in your virtualenv:

git clone [email protected]:Rishit-dagli/Gradient-Centralization-TensorFlow
# or clone your own fork

pip install -e .[dev]

License

Copyright 2020 Rishit Dagli

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Comments
  • On windows Tensorflow 2.5 it gives error

    On windows Tensorflow 2.5 it gives error

    On windows 10 with miniconda enviroment tensorflow 2.5 gives error on centralized_gradients.py file.

    the solution is change import keras.backend as K with import tensorflow.keras.backend as K

    bug 
    opened by mgezer 5
  • The results in the mnist example are wrong/misleading

    The results in the mnist example are wrong/misleading

    Describe the bug The results in your colab ipython notebook are misleading: https://colab.research.google.com/github/Rishit-dagli/Gradient-Centralization-TensorFlow/blob/main/examples/gctf_mnist.ipynb

    In this example, the model is first trained with a normal Adam optimizer:

    model.compile(optimizer = tf.keras.optimizers.Adam(),
                  loss = 'sparse_categorical_crossentropy',
                  metrics = ['accuracy'])
    
    history_no_gctf = model.fit(training_images, training_labels, epochs=5, callbacks = [time_callback_no_gctf])
    

    And afterwards the same model is recompiled with the gctf.optimizers.adam(). However, recompiling a keras model does not reset the weights. This means that in the first fit call the model is trained and then in the second fit call with the new optimizer the same model is used and of course then the results are better.

    This can be fixed, by recreating the model for the second run, by just adding these few lines:

    import gctf #import gctf
    
    time_callback_gctf = TimeHistory()
    
    # Model architecture
    model = tf.keras.models.Sequential([
                                        tf.keras.layers.Flatten(), 
                                        tf.keras.layers.Dense(512, activation=tf.nn.relu),
                                        tf.keras.layers.Dense(256, activation=tf.nn.relu),
                                        tf.keras.layers.Dense(64, activation=tf.nn.relu),
                                        tf.keras.layers.Dense(512, activation=tf.nn.relu),
                                        tf.keras.layers.Dense(256, activation=tf.nn.relu),
                                        tf.keras.layers.Dense(64, activation=tf.nn.relu), 
                                        tf.keras.layers.Dense(10, activation=tf.nn.softmax)])
    
    model.compile(optimizer = gctf.optimizers.adam(),
                  loss = 'sparse_categorical_crossentropy',
                  metrics=['accuracy'])
    
    history_gctf = model.fit(training_images, training_labels, epochs=5, callbacks=[time_callback_gctf])
    

    However, then the results are not better than without gctf:

    Type                   Execution time    Accuracy      Loss
    -------------------  ----------------  ----------  --------
    Model without gctf:           24.7659    0.88825   0.305801
    Model with gctf               24.7881    0.889567  0.30812
    

    Could you please clarify what happens here. I tried this gctf.optimizers.adam() optimizer in my own research and it didn't change the results at all and now after seeing it doesn't work in the example which was constructed here. Makes me question the results of this paper.

    To Reproduce Execute the colab file given in the repository: https://colab.research.google.com/github/Rishit-dagli/Gradient-Centralization-TensorFlow/blob/main/examples/gctf_mnist.ipynb

    Expected behavior The right comparison would be if both models start from a random initialization, not that the second model can start with the already pre-trained weights.

    Looking forward to a fast a swift explanation.

    Best, Max

    question 
    opened by themasterlink 2
  • Wider dependency requirements

    Wider dependency requirements

    The package as of now to be installed requires tensorflow ~= 2.4.0 and keras ~= 2.4.0. It turns out that this is sometimes problematic for folks who have custom installations of TensorFlow and a winder requirement could be set up.

    enhancement 
    opened by Rishit-dagli 1
  • Release 0.0.3

    Release 0.0.3

    This release includes some fixes and improvements

    βœ… Bug Fixes / Improvements

    • Allow wider versions for TensorFlow and Keras while installing the package (#14 )
    • Fixed incorrect usage example in docstrings and description for centralized_gradients_for_optimizer (#13 )
    • Add clear aims for each of the examples of using gctf (#15 )
    • Updates PyPi classifiers to clearly show the aims of this project. This should have no changes in the way you use this package (#18 )
    • Add clear instructions for using this with custom optimizers i.e. directly use get_centralized_gradients however a complete example has not been pushed due to the reasons mentioned in the issue (#16 )
    opened by Rishit-dagli 0
  • Add an

    Add an "About The Examples" section

    Add an "About The Examples" section which contains a summary of the usage example notebooks and links to run it on Binder and Colab.


    Close #15

    opened by Rishit-dagli 0
  • Update relevant pypi classifiers

    Update relevant pypi classifiers

    Add PyPI classifiers for:

    • Development status
    • Intended Audience
    • Topic

    Further also added the Programming Language :: Python :: 3 :: Only classifer


    Closes #18

    opened by Rishit-dagli 0
  • Update pypi classifiers

    Update pypi classifiers

    I am specifically thinking of adding three more categories of pypi classifiers:

    • Development status
    • Intended Audience
    • Topic

    Apart from this I also think it would be great to add the Programming Language :: Python :: 3 :: Only to make sure the audience to know that this package is intended for Python 3 only.

    opened by Rishit-dagli 0
  • Add an

    Add an "About the examples" section

    It would be great to write an "About the example" section which could demonstrate in short what the example notebooks aim to achieve and show.

    documentation 
    opened by Rishit-dagli 0
  • Error in usage example for gctf.centralized_gradients_for_optimizer

    Error in usage example for gctf.centralized_gradients_for_optimizer

    I noticed that the docstrings for gctf.centralized_gradients_for_optimizer have an error in the example usage section. The example creates an Adam optimizer instance and saves it to opt however the centralized_gradients_for_optimizer is applied on optimizer which ideally does not exist and running the example would result in an error.

    documentation 
    opened by Rishit-dagli 0
  • [ImgBot] Optimize images

    [ImgBot] Optimize images

    opened by imgbot[bot] 0
  • [ImgBot] Optimize images

    [ImgBot] Optimize images

    opened by imgbot[bot] 0
Releases(v0.0.3)
  • v0.0.3(Mar 11, 2021)

    This release includes some fixes and improvements

    βœ… Bug Fixes / Improvements

    • Allow wider versions for TensorFlow and Keras while installing the package (#14 )
    • Fixed incorrect usage example in docstrings and description for centralized_gradients_for_optimizer (#13 )
    • Add clear aims for each of the examples of using gctf (#15 )
    • Updates PyPi classifiers to clearly show the aims of this project. This should have no changes in the way you use this package (#18 )
    • Add clear instructions for using this with custom optimizers i.e. directly use get_centralized_gradients however a complete example has not been pushed due to the reasons mentioned in the issue (#16 )
    Source code(tar.gz)
    Source code(zip)
  • v0.0.2(Feb 21, 2021)

    This release includes some fixes and improvements

    βœ… Bug Fixes / Improvements

    • Fix the issue of supporting multiple modules
    • Fix multiple typos.
    Source code(tar.gz)
    Source code(zip)
  • v0.0.1(Feb 20, 2021)

Owner
Rishit Dagli
High School, Ted-X, Ted-Ed speaker|Mentor, TFUG Mumbai|International Speaker|Microsoft Student Ambassador|#ExploreML Facilitator
Rishit Dagli
Code for the paper "Training GANs with Stronger Augmentations via Contrastive Discriminator" (ICLR 2021)

Training GANs with Stronger Augmentations via Contrastive Discriminator (ICLR 2021) This repository contains the code for reproducing the paper: Train

Jongheon Jeong 174 Dec 29, 2022
Code for "Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks", CVPR 2021

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks This repository contains the code that accompanies our CVPR 20

Despoina Paschalidou 161 Dec 20, 2022
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023
Generalized and Efficient Blackbox Optimization System.

OpenBox Doc | OpenBoxδΈ­ζ–‡ζ–‡ζ‘£ OpenBox: Generalized and Efficient Blackbox Optimization System OpenBox is an efficient and generalized blackbox optimizatio

DAIR Lab 238 Dec 29, 2022
A data-driven maritime port simulator

PySeidon - A Data-Driven Maritime Port Simulator 🌊 Extendable and modular software for maritime port simulation. This software uses entity-component

6 Apr 10, 2022
Source code for the ACL-IJCNLP 2021 paper entitled "T-DNA: Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adaptation" by Shizhe Diao et al.

T-DNA Source code for the ACL-IJCNLP 2021 paper entitled Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adapta

shizhediao 17 Dec 22, 2022
Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Kento Nishi 22 Jul 07, 2022
An improvement of FasterGICP: Acceptance-rejection Sampling based 3D Lidar Odometry

fasterGICP This package is an improvement of fast_gicp Please cite our paper if possible. W. Jikai, M. Xu, F. Farzin, D. Dai and Z. Chen, "FasterGICP:

79 Dec 31, 2022
UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus

UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus General info This is

71 Oct 25, 2022
Hands-On Machine Learning for Algorithmic Trading, published by Packt

Hands-On Machine Learning for Algorithmic Trading Hands-On Machine Learning for Algorithmic Trading, published by Packt This is the code repository fo

Packt 981 Dec 29, 2022
Instant-nerf-pytorch - NeRF trained SUPER FAST in pytorch

instant-nerf-pytorch This is WORK IN PROGRESS, please feel free to contribute vi

94 Nov 22, 2022
A PyTorch Implementation of "SINE: Scalable Incomplete Network Embedding" (ICDM 2018).

Scalable Incomplete Network Embedding β €β € A PyTorch implementation of Scalable Incomplete Network Embedding (ICDM 2018). Abstract Attributed network em

Benedek Rozemberczki 69 Sep 22, 2022
Code for Towards Unifying Behavioral and Response Diversity for Open-ended Learning in Zero-sum Games

Unifying Behavioral and Response Diversity for Open-ended Learning in Zero-sum Games How to run our algorithm? Create the new environment using: conda

MARL @ SJTU 8 Dec 27, 2022
The pytorch implementation of DG-Font: Deformable Generative Networks for Unsupervised Font Generation

DG-Font: Deformable Generative Networks for Unsupervised Font Generation The source code for 'DG-Font: Deformable Generative Networks for Unsupervised

130 Dec 05, 2022
Styleformer - Official Pytorch Implementation

Styleformer -- Official PyTorch implementation Styleformer: Transformer based Generative Adversarial Networks with Style Vector(https://arxiv.org/abs/

Jeeseung Park 159 Dec 12, 2022
[IJCAI'21] Deep Automatic Natural Image Matting

Deep Automatic Natural Image Matting [IJCAI-21] This is the official repository of the paper Deep Automatic Natural Image Matting. Introduction | Netw

Jizhizi_Li 316 Jan 06, 2023
Code and dataset for ACL2018 paper "Exploiting Document Knowledge for Aspect-level Sentiment Classification"

Aspect-level Sentiment Classification Code and dataset for ACL2018 [paper] β€˜β€˜Exploiting Document Knowledge for Aspect-level Sentiment Classification’’

Ruidan He 146 Nov 29, 2022
On Nonlinear Latent Transformations for GAN-based Image Editing - PyTorch implementation

On Nonlinear Latent Transformations for GAN-based Image Editing - PyTorch implementation On Nonlinear Latent Transformations for GAN-based Image Editi

Valentin Khrulkov 22 Oct 24, 2022
Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax

Clockwork VAEs in JAX/Flax Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax, ported

Julius Kunze 26 Oct 05, 2022
Official Pytorch Implementation of Relational Self-Attention: What's Missing in Attention for Video Understanding

Relational Self-Attention: What's Missing in Attention for Video Understanding This repository is the official implementation of "Relational Self-Atte

mandos 43 Dec 07, 2022