[CVPR 2021] Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach

Overview

Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach

This is the repo to host the dataset TextSeg and code for TexRNet from the following paper:

Xingqian Xu, Zhifei Zhang, Zhaowen Wang, Brian Price, Zhonghao Wang and Humphrey Shi, Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach, ArXiv Link

Note:

[2021.04.21] So far, our dataset is partially released with images and semantic labels. Since many people may request the dataset for OCR or non-segmentation tasks, please stay tuned, and we will release the dataset in full ASAP.

[2021.06.18] Our dataset is now fully released. To download the data, please send a request email to [email protected] and tell us which school you are affiliated with. Please be aware the released dataset is version 2, and the annotations are slightly different from the one in the paper. In order to provide the most accurate dataset, we went through a second round of quality assurance, in which we fixed some faulty annotations and made them more consistent across the dataset. Since our TexRNet in the paper doesn't use OCR and character instance labels (i.e. word- and character-level bounding polygons; character-level masks;), we will not release the older version of these labels. However, we release the retroactive semantic_label_v1.tar.gz for researchers to reproduce the results in the paper. For more details about the dataset, please see below.

Introduction

Text in the real world is extremely diverse, yet current text dataset does not reflect such diversity very well. To bridge this gap, we proposed TextSeg, a large-scale fine-annotated and multi-purpose text dataset, collecting scene and design text with six types of annotations: word- and character-wise bounding polygons, masks and transcriptions. We also introduce Text Refinement Network (TexRNet), a novel text segmentation approach that adapts to the unique properties of text, e.g. non-convex boundary, diverse texture, etc., which often impose burdens on traditional segmentation models. TexRNet refines results from common segmentation approach via key features pooling and attention, so that wrong-activated text regions can be adjusted. We also introduce trimap and discriminator losses that show significant improvement on text segmentation.

TextSeg Dataset

Image Collection

Annotation

Download

Our dataset (TextSeg) is academia-only and cannot be used on any commercial project and research. To download the data, please send a request email to [email protected] and tell us which school you are affiliated with.

A full download should contain these files:

  • image.tar.gz contains 4024 images.
  • annotation.tar.gz labels corresponding to the images. These three types of files are included:
    • [dataID]_anno.json contains all word- and character-level translations and bounding polygons.
    • [dataID]_mask.png contains all character masks. Character mask label value will be ordered from 1 to n. Label value 0 means background, 255 means ignore.
    • [dataID]_maskeff.png contains all character masks with effect.
    • Adobe_Research_License_TextSeg.txt license file.
  • semantic_label.tar.gz contains all word-level (semantic-level) masks. It contains:
    • [dataID]_maskfg.png 0 means background, 100 means word, 200 means word-effect, 255 means ignore. (The [dataID]_maskfg.png can also be generated using [dataID]_mask.png and [dataID]_maskeff.png)
  • split.json the official split of train, val and test.
  • [Optional] semantic_label_v1.tar.gz the old version of label that was used in our paper. One can download it to reproduce our paper results.

TexRNet Structure and Results

In this table, we report the performance of our TexRNet on 5 text segmentation dataset including ours.

TextSeg(Ours) ICDAR13 FST COCO_TS MLT_S Total-Text
Method fgIoU F-score fgIoU F-score fgIoU F-score fgIoU F-score fgIoU F-score
DeeplabV3+ 84.07 0.914 69.27 0.802 72.07 0.641 84.63 0.837 74.44 0.824
HRNetV2-W48 85.03 0.914 70.98 0.822 68.93 0.629 83.26 0.836 75.29 0.825
HRNetV2-W48 + OCR 85.98 0.918 72.45 0.830 69.54 0.627 83.49 0.838 76.23 0.832
Ours: TexRNet + DeeplabV3+ 86.06 0.921 72.16 0.835 73.98 0.722 86.31 0.830 76.53 0.844
Ours: TexRNet + HRNetV2-W48 86.84 0.924 73.38 0.850 72.39 0.720 86.09 0.865 78.47 0.848

To run the code

Set up the environment

conda create -n texrnet python=3.7
conda activate texrnet
pip install -r requirement.txt

To eval

First, make the following directories to hold pre-trained models, dataset, and running logs:

mkdir ./pretrained
mkdir ./data
mkdir ./log

Second, download the models from this link. Move those downloaded models to ./pretrained.

Thrid, make sure that ./data contains the data. A sample root directory for TextSeg would be ./data/TextSeg.

Lastly, evaluate the model and compute fgIoU/F-score with the following command:

python main.py --eval --pth [model path] [--hrnet] [--gpu 0 1 ...] --dsname [dataset name]

Here is the sample command to eval a TexRNet_HRNet on TextSeg with 4 GPUs:

python main.py --eval --pth pretrained/texrnet_hrnet.pth --hrnet --gpu 0 1 2 3 --dsname textseg

The program will store results and execution log in ./log/eval.

To train

Similarly, these directories need to be created:

mkdir ./pretrained
mkdir ./pretrained/init
mkdir ./data
mkdir ./log

Second, we use multiple pre-trained models for training. Download these initial models from this link. Move those models to ./pretrained/init. Also, make sure that ./data contains the data.

Lastly, execute the training code with the following command:

python main.py [--hrnet] [--gpu 0 1 ...] --dsname [dataset name] [--trainwithcls]

Here is the sample command to train a TexRNet_HRNet on TextSeg with classifier and discriminate loss using 4 GPUs:

python main.py --hrnet --gpu 0 1 2 3 --dsname textseg --trainwithcls

The training configs, logs, and models will be stored in ./log/texrnet_[dsname]/[exid]_[signature].

Bibtex

@article{xu2020rethinking,
  title={Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach},
  author={Xu, Xingqian and Zhang, Zhifei and Wang, Zhaowen and Price, Brian and Wang, Zhonghao and Shi, Humphrey},
  journal={arXiv preprint arXiv:2011.14021},
  year={2020}
}

Acknowledgements

The directory .\hrnet_code is directly copied from the HRNet official github website (link). HRNet code ownership should be credited to HRNet authors, and users should follow their terms of usage.

Owner
SHI Lab
Research in Synergetic & Holistic Intelligence, with current focus on Computer Vision, Machine Learning, and AI Systems & Applications
SHI Lab
Hand Gesture Volume Control | Open CV | Computer Vision

Gesture Volume Control Hand Gesture Volume Control | Open CV | Computer Vision Use gesture control to change the volume of a computer. First we look i

Jhenil Parihar 3 Jun 15, 2022
(JMLR'19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats Build Status & Coverage & Maintainability & License PyOD is a comprehensive and sca

Yue Zhao 6.6k Jan 03, 2023
AdelaiDet is an open source toolbox for multiple instance-level detection and recognition tasks.

AdelaiDet is an open source toolbox for multiple instance-level detection and recognition tasks.

Adelaide Intelligent Machines (AIM) Group 3k Jan 02, 2023
Unofficial PyTorch implementation of Fastformer based on paper "Fastformer: Additive Attention Can Be All You Need"."

Fastformer-PyTorch Unofficial PyTorch implementation of Fastformer based on paper Fastformer: Additive Attention Can Be All You Need. Usage : import t

Hong-Jia Chen 126 Dec 06, 2022
PyTorch code for our paper "Image Super-Resolution with Non-Local Sparse Attention" (CVPR2021).

Image Super-Resolution with Non-Local Sparse Attention This repository is for NLSN introduced in the following paper "Image Super-Resolution with Non-

143 Dec 28, 2022
Python scripts using the Mediapipe models for Halloween.

Mediapipe-Halloween-Examples Python scripts using the Mediapipe models for Halloween. WHY Mainly for fun. But this repository also includes useful exa

Ibai Gorordo 23 Jan 06, 2023
AI创造营 :Metaverse启动机之重构现世,结合PaddlePaddle 和 Wechaty 创造自己的聊天机器人

paddle-wechaty-Zodiac AI创造营 :Metaverse启动机之重构现世,结合PaddlePaddle 和 Wechaty 创造自己的聊天机器人 12星座若穿越科幻剧,会拥有什么超能力呢?快来迎接你的专属超能力吧! 现在很多年轻人都喜欢看科幻剧,像是复仇者系列,里面有很多英雄、超

105 Dec 22, 2022
Lazy, a tool for running things in idle time

Lazy, a tool for running things in idle time Mostly used to stop CUDA ML model training from making my desktop unusable. Simply monitors keyboard/mous

N Shepperd 46 Nov 06, 2022
Python Blood Vessel Topology Analysis

Python Blood Vessel Topology Analysis This repository is not being updated anymore. The new version of PyVesTo is called PyVaNe and is available at ht

6 Nov 15, 2022
This is the code for Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning

This is the code for Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning It includes /bert, which is the original BERT repos

Mitchell Gordon 11 Nov 15, 2022
Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement (NeurIPS 2020)

MTTS-CAN: Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement Paper Xin Liu, Josh Fromm, Shwetak Patel, Daniel M

Xin Liu 106 Dec 30, 2022
Code for technical report "An Improved Baseline for Sentence-level Relation Extraction".

RE_improved_baseline Code for technical report "An Improved Baseline for Sentence-level Relation Extraction". Requirements torch = 1.8.1 transformers

Wenxuan Zhou 74 Nov 29, 2022
Official repo for QHack—the quantum machine learning hackathon

Note: This repository has been frozen while we consider the submissions for the QHack Open Hackathon. We hope you enjoyed the event! Welcome to QHack,

Xanadu 118 Jan 05, 2023
Pytorch tutorials for Neural Style transfert

PyTorch Tutorials This tutorial is no longer maintained. Please use the official version: https://pytorch.org/tutorials/advanced/neural_style_tutorial

Alexis David Jacq 135 Jun 26, 2022
My personal Home Assistant configuration.

About This is my personal Home Assistant configuration. My guiding princile is to have full local control of all my devices. I intend everything to ru

Chris Turra 13 Jun 07, 2022
Code accompanying the paper Shared Independent Component Analysis for Multi-subject Neuroimaging

ShICA Code accompanying the paper Shared Independent Component Analysis for Multi-subject Neuroimaging Install Move into the ShICA directory cd ShICA

8 Nov 07, 2022
Deep learning model, heat map, data prepo

deep learning model, heat map, data prepo

Pamela Dekas 1 Jan 14, 2022
A very impractical 3D rendering engine that runs in the python terminal.

Terminal-3D-Render A very impractical 3D rendering engine that runs in the python terminal. do NOT try to run this program using the standard python I

23 Dec 31, 2022
Understanding Convolution for Semantic Segmentation

TuSimple-DUC by Panqu Wang, Pengfei Chen, Ye Yuan, Ding Liu, Zehua Huang, Xiaodi Hou, and Garrison Cottrell. Introduction This repository is for Under

TuSimple 585 Dec 31, 2022
BookMyShowPC - Movie Ticket Reservation App made with Tkinter

Book My Show PC What is this? Movie Ticket Reservation App made with Tkinter. Tk

The Nithin Balaji 3 Dec 09, 2022