KoBERT - Korean BERT pre-trained cased (KoBERT)

Overview

KoBERT


Korean BERT pre-trained cased (KoBERT)

Why'?'

Training Environment

  • Architecture
predefined_args = {
        'attention_cell': 'multi_head',
        'num_layers': 12,
        'units': 768,
        'hidden_size': 3072,
        'max_length': 512,
        'num_heads': 12,
        'scaled': True,
        'dropout': 0.1,
        'use_residual': True,
        'embed_size': 768,
        'embed_dropout': 0.1,
        'token_type_vocab_size': 2,
        'word_embed': None,
    }
  • 학습셋
데이터 문장 단어
한국어 위키 5M 54M
  • 학습 환경
    • V100 GPU x 32, Horovod(with InfiniBand)

2019-04-29 텐서보드 로그

  • 사전(Vocabulary)
    • 크기 : 8,002
    • 한글 위키 기반으로 학습한 토크나이저(SentencePiece)
    • Less number of parameters(92M < 110M )

Requirements

How to install

  • Install KoBERT as a python package

    pip install git+https://[email protected]/SKTBrain/[email protected]
  • If you want to modify source codes, please clone this repository

    git clone https://github.com/SKTBrain/KoBERT.git
    cd KoBERT
    pip install -r requirements.txt

How to use

Using with PyTorch

Huggingface transformers API가 편하신 분은 여기를 참고하세요.

>>> import torch
>>> from kobert import get_pytorch_kobert_model
>>> input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
>>> input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
>>> token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
>>> model, vocab  = get_pytorch_kobert_model()
>>> sequence_output, pooled_output = model(input_ids, input_mask, token_type_ids)
>>> pooled_output.shape
torch.Size([2, 768])
>>> vocab
Vocab(size=8002, unk="[UNK]", reserved="['[MASK]', '[SEP]', '[CLS]']")
>>> # Last Encoding Layer
>>> sequence_output[0]
tensor([[-0.2461,  0.2428,  0.2590,  ..., -0.4861, -0.0731,  0.0756],
        [-0.2478,  0.2420,  0.2552,  ..., -0.4877, -0.0727,  0.0754],
        [-0.2472,  0.2420,  0.2561,  ..., -0.4874, -0.0733,  0.0765]],
       grad_fn=<SelectBackward>)

model은 디폴트로 eval()모드로 리턴됨, 따라서 학습 용도로 사용시 model.train()명령을 통해 학습 모드로 변경할 필요가 있다.

  • Naver Sentiment Analysis Fine-Tuning with pytorch
    • Colab에서 [런타임] - [런타임 유형 변경] - 하드웨어 가속기(GPU) 사용을 권장합니다.
    • Open In Colab

Using with ONNX

>>> import onnxruntime
>>> import numpy as np
>>> from kobert import get_onnx_kobert_model
>>> onnx_path = get_onnx_kobert_model()
>>> sess = onnxruntime.InferenceSession(onnx_path)
>>> input_ids = [[31, 51, 99], [15, 5, 0]]
>>> input_mask = [[1, 1, 1], [1, 1, 0]]
>>> token_type_ids = [[0, 0, 1], [0, 1, 0]]
>>> len_seq = len(input_ids[0])
>>> pred_onnx = sess.run(None, {'input_ids':np.array(input_ids),
>>>                             'token_type_ids':np.array(token_type_ids),
>>>                             'input_mask':np.array(input_mask),
>>>                             'position_ids':np.array(range(len_seq))})
>>> # Last Encoding Layer
>>> pred_onnx[-2][0]
array([[-0.24610452,  0.24282141,  0.25895312, ..., -0.48613444,
        -0.07305173,  0.07560554],
       [-0.24783179,  0.24200465,  0.25520486, ..., -0.4877185 ,
        -0.0727044 ,  0.07536091],
       [-0.24721591,  0.24196623,  0.2560626 , ..., -0.48743123,
        -0.07326943,  0.07650235]], dtype=float32)

ONNX 컨버팅은 soeque1께서 도움을 주셨습니다.

Using with MXNet-Gluon

>>> import mxnet as mx
>>> from kobert import get_mxnet_kobert_model
>>> input_id = mx.nd.array([[31, 51, 99], [15, 5, 0]])
>>> input_mask = mx.nd.array([[1, 1, 1], [1, 1, 0]])
>>> token_type_ids = mx.nd.array([[0, 0, 1], [0, 1, 0]])
>>> model, vocab = get_mxnet_kobert_model(use_decoder=False, use_classifier=False)
>>> encoder_layer, pooled_output = model(input_id, token_type_ids)
>>> pooled_output.shape
(2, 768)
>>> vocab
Vocab(size=8002, unk="[UNK]", reserved="['[MASK]', '[SEP]', '[CLS]']")
>>> # Last Encoding Layer
>>> encoder_layer[0]
[[-0.24610372  0.24282135  0.2589539  ... -0.48613444 -0.07305248
   0.07560539]
 [-0.24783105  0.242005    0.25520545 ... -0.48771808 -0.07270523
   0.07536077]
 [-0.24721491  0.241966    0.25606337 ... -0.48743105 -0.07327032
   0.07650219]]
<NDArray 3x768 @cpu(0)>
  • Naver Sentiment Analysis Fine-Tuning with MXNet
    • Open In Colab

Tokenizer

>>> from gluonnlp.data import SentencepieceTokenizer
>>> from kobert import get_tokenizer
>>> tok_path = get_tokenizer()
>>> sp  = SentencepieceTokenizer(tok_path)
>>> sp('한국어 모델을 공유합니다.')
['▁한국', '어', '▁모델', '을', '▁공유', '합니다', '.']

Subtasks

Naver Sentiment Analysis

Model Accuracy
BERT base multilingual cased 0.875
KoBERT 0.901
KoGPT2 0.899

KoBERT와 CRF로 만든 한국어 객체명인식기

문장을 입력하세요:  SKTBrain에서 KoBERT 모델을 공개해준 덕분에 BERT-CRF 기반 객체명인식기를 쉽게 개발할 수 있었다.
len: 40, input_token:['[CLS]', '▁SK', 'T', 'B', 'ra', 'in', '에서', '▁K', 'o', 'B', 'ER', 'T', '▁모델', '을', '▁공개', '해', '준', '▁덕분에', '▁B', 'ER', 'T', '-', 'C', 'R', 'F', '▁기반', '▁', '객', '체', '명', '인', '식', '기를', '▁쉽게', '▁개발', '할', '▁수', '▁있었다', '.', '[SEP]']
len: 40, pred_ner_tag:['[CLS]', 'B-ORG', 'I-ORG', 'I-ORG', 'I-ORG', 'I-ORG', 'O', 'B-POH', 'I-POH', 'I-POH', 'I-POH', 'I-POH', 'O', 'O', 'O', 'O', 'O', 'O', 'B-POH', 'I-POH', 'I-POH', 'I-POH', 'I-POH', 'I-POH', 'I-POH', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', '[SEP]']
decoding_ner_sentence: [CLS] <SKTBrain:ORG>에서 <KoBERT:POH> 모델을 공개해준 덕분에 <BERT-CRF:POH> 기반 객체명인식기를 쉽게 개발할 수 있었다.[SEP]

Release

  • v0.2.1
    • guide default 'import statements'
  • v0.2
    • download large files from aws s3
    • rename functions
  • v0.1.2
    • Guaranteed compatibility with higher versions of transformers
    • fix pad token index id
  • v0.1.1
    • 사전(vocabulary)과 토크나이저 통합
  • v0.1
    • 초기 모델 릴리즈

Contacts

KoBERT 관련 이슈는 이곳에 등록해 주시기 바랍니다.

License

KoBERTApache-2.0 라이선스 하에 공개되어 있습니다. 모델 및 코드를 사용할 경우 라이선스 내용을 준수해주세요. 라이선스 전문은 LICENSE 파일에서 확인하실 수 있습니다.

Owner
SK T-Brain
Artificial Intelligence
SK T-Brain
Mlcode - Continuous ML API Integrations

mlcode Basic APIs for ML applications. Django REST Application Contains REST API

Sujith S 1 Jan 01, 2022
Code for our paper "Mask-Align: Self-Supervised Neural Word Alignment" in ACL 2021

Mask-Align: Self-Supervised Neural Word Alignment This is the implementation of our work Mask-Align: Self-Supervised Neural Word Alignment. @inproceed

THUNLP-MT 46 Dec 15, 2022
Stand-alone language identification system

langid.py readme Introduction langid.py is a standalone Language Identification (LangID) tool. The design principles are as follows: Fast Pre-trained

2k Jan 04, 2023
ProtFeat is protein feature extraction tool that utilizes POSSUM and iFeature.

Description: ProtFeat is designed to extract the protein features by employing POSSUM and iFeature python-based tools. ProtFeat includes a total of 39

GOKHAN OZSARI 5 Dec 16, 2022
Amazon Multilingual Counterfactual Dataset (AMCD)

Amazon Multilingual Counterfactual Dataset (AMCD)

35 Sep 20, 2022
تولید اسم های رندوم فینگیلیش

karafs کرفس تولید اسم های رندوم فینگیلیش installation ➜ pip install karafs usage دو زبانه ➜ karafs -n 10 توت فرنگی بی ناموس toot farangi-ye bi_namoos

Vaheed NÆINI (9E) 36 Nov 24, 2022
topic modeling on unstructured data in Space news articles retrieved from the Guardian (UK) newspaper using API

NLP Space News Topic Modeling Photos by nasa.gov (1, 2, 3, 4, 5) and extremetech.com Table of Contents Project Idea Data acquisition Primary data sour

edesz 1 Jan 03, 2022
a chinese segment base on crf

Genius Genius是一个开源的python中文分词组件,采用 CRF(Conditional Random Field)条件随机场算法。 Feature 支持python2.x、python3.x以及pypy2.x。 支持简单的pinyin分词 支持用户自定义break 支持用户自定义合并词

duanhongyi 237 Nov 04, 2022
EMNLP'2021: Can Language Models be Biomedical Knowledge Bases?

BioLAMA BioLAMA is biomedical factual knowledge triples for probing biomedical LMs. The triples are collected and pre-processed from three sources: CT

DMIS Laboratory - Korea University 41 Nov 18, 2022
Binaural Speech Synthesis

Binaural Speech Synthesis This repository contains code to train a mono-to-binaural neural sound renderer. If you use this code or the provided datase

Facebook Research 135 Dec 18, 2022
Tool to check whether a GCP bucket is public or not.

Tool to check publicly accessible GCP bucket. Blog https://justm0rph3u5.medium.com/gcp-inspector-auditing-publicly-exposed-gcp-bucket-ac6cad55618c Wha

DIVYANSHU SHUKLA 7 Nov 24, 2022
Super Tickets in Pre-Trained Language Models: From Model Compression to Improving Generalization (ACL 2021)

Structured Super Lottery Tickets in BERT This repo contains our codes for the paper "Super Tickets in Pre-Trained Language Models: From Model Compress

Chen Liang 16 Dec 11, 2022
Implementation of Multistream Transformers in Pytorch

Multistream Transformers Implementation of Multistream Transformers in Pytorch. This repository deviates slightly from the paper, where instead of usi

Phil Wang 47 Jul 26, 2022
VampiresVsWerewolves - Our Implementation of a MiniMax algorithm with alpha beta pruning in the context of an in-class competition

VampiresVsWerewolves Our Implementation of a MiniMax algorithm with alpha beta pruning in the context of an in-class competition. Our Algorithm finish

Shawn 1 Jan 21, 2022
Snips Python library to extract meaning from text

Snips NLU Snips NLU (Natural Language Understanding) is a Python library that allows to extract structured information from sentences written in natur

Snips 3.7k Dec 30, 2022
SummerTime - Text Summarization Toolkit for Non-experts

A library to help users choose appropriate summarization tools based on their specific tasks or needs. Includes models, evaluation metrics, and datasets.

Yale-LILY 213 Jan 04, 2023
SpikeX - SpaCy Pipes for Knowledge Extraction

SpikeX is a collection of pipes ready to be plugged in a spaCy pipeline. It aims to help in building knowledge extraction tools with almost-zero effort.

Erre Quadro Srl 384 Dec 12, 2022
Submit issues and feature requests for our API here.

AIx GPT API Submit issues and feature requests for our API here. See https://apps.aixsolutionsgroup.com for more info. Python Quick Start pip install

AIx Solutions 7 Mar 27, 2022
Black for Python docstrings and reStructuredText (rst).

Style-Doc Style-Doc is Black for Python docstrings and reStructuredText (rst). It can be used to format docstrings (Google docstring format) in Python

Telekom Open Source Software 13 Oct 24, 2022
Search Git commits in natural language

NaLCoS - NAtural Language COmmit Search Search commit messages in your repository in natural language. NaLCoS (NAtural Language COmmit Search) is a co

Pushkar Patel 50 Mar 22, 2022