RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation

Related tags

Deep LearningRL-GAN
Overview

RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation

RL-GAN is an official implementation of the paper: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation.

Paper

Shani Gamrian, Yoav Goldberg, "Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation"

@article{DBLP:journals/corr/abs-1806-07377,
  author    = {Shani Gamrian and
               Yoav Goldberg},
  title     = {Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image
               Translation},
  journal   = {CoRR},
  volume    = {abs/1806.07377},
  year      = {2018},
  url       = {http://arxiv.org/abs/1806.07377},
  archivePrefix = {arXiv},
  eprint    = {1806.07377},
  timestamp = {Mon, 13 Aug 2018 16:48:23 +0200},
  biburl    = {https://dblp.org/rec/bib/journals/corr/abs-1806-07377},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

Videos:

Breakout

RoadFighter

Installation

  • The code was tested on Ubuntu 16.04 with Python 3.6
  • Install packages by typing the command: pip install -r requirements.txt.
  • For Road Fighter, clone and install the repo: https://github.com/ShaniGam/retro

Getting Started

Breakout Examples

  • Train Breakout from scratch:
python -m breakout_a3c.main --num-processes 32 --variation 'standart'
  • Transfer from standart to diagonals variation and fine-tune the model:
python -m breakout_a3c.main --num-processes 32 --variation diagonals --ft-setting full-ft --test
  • Collect images for UNIT training:
python -m breakout_a3c.main --collect-images --num-collected-imgs 100000 --variation diagonals --num-processes 1
  • Train UNIT:
python -m unit.train --trainer UNIT --config unit/configs/breakout-diagonals.yaml
  • Run Breakout with UNIT:
python -m breakout_a3c.main --variation diagonals --test --ft-setting full-ft --test-gan --gan-dir breakout-diagonals --num-processes 0

Road Fighter Examples

  • Train level 1 of Road Fighter
python -m roadfighter_a2c.main --num-processes 84
  • Collect images for UNIT training:
python -m roadfighter_a2c.main -level 1 --collect-images --num-collected-imgs 100000 --num-processes 1
python -m roadfighter_a2c.main -level 2 --collect-images --num-collected-imgs 100000 --num-processes 1
  • Train UNIT:
python -m unit.train --trainer UNIT --config unit/configs/roadfighter-lvl2.yaml
  • Run Road Fighter with UNIT:
python -m roadfighter_a2c.main --load --level 2 --test-gan --gan-dir roadfighter-lvl2-kl01 --num-processes 1
  • Run Road Fighter with UNIT and Imitation Learning:
python -m roadfighter_a2c.main_imitation --load --gan-dir roadfighter-lvl2-kl01 --gan-imitation-file '00320000' --log-name lvl2.log --super-during-rl --level 2 --det-score 5350

Acknowledgments

The code was written by Shani Gamrian and is based on the repositories: pytorch-a3c, pytorch-a2c, UNIT

TO-DO

  • Add links for pretrained models.
  • Create videos.
This repository is a series of notebooks that show solutions for the projects at Dataquest.io.

Dataquest Project Solutions This repository is a series of notebooks that show solutions for the projects at Dataquest.io. Of course, there are always

Dataquest 1.1k Dec 30, 2022
Avalanche RL: an End-to-End Library for Continual Reinforcement Learning

Avalanche RL: an End-to-End Library for Continual Reinforcement Learning Avalanche Website | Getting Started | Examples | Tutorial | API Doc | Paper |

ContinualAI 43 Dec 24, 2022
Implementation of a protein autoregressive language model, but with autoregressive infilling objective (editing subsequences capability)

Protein GLM (wip) Implementation of a protein autoregressive language model, but with autoregressive infilling objective (editing subsequences capabil

Phil Wang 17 May 06, 2022
Official implementation of the method ContIG, for self-supervised learning from medical imaging with genomics

ContIG: Self-supervised Multimodal Contrastive Learning for Medical Imaging with Genetics This is the code implementation of the paper "ContIG: Self-s

Digital Health & Machine Learning 22 Dec 13, 2022
Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Mingrui Yu 3 Jan 07, 2022
General-purpose program synthesiser

DeepSynth General-purpose program synthesiser. This is the repository for the code of the paper "Scaling Neural Program Synthesis with Distribution-ba

Nathanaël Fijalkow 24 Oct 23, 2022
A torch implementation of "Pixel-Level Domain Transfer"

Pixel Level Domain Transfer A torch implementation of "Pixel-Level Domain Transfer". based on dcgan.torch. Dataset The dataset used is "LookBook", fro

Fei Xia 260 Sep 02, 2022
Implementation of the Paper: "Parameterized Hypercomplex Graph Neural Networks for Graph Classification" by Tuan Le, Marco Bertolini, Frank Noé and Djork-Arné Clevert

Parameterized Hypercomplex Graph Neural Networks (PHC-GNNs) PHC-GNNs (Le et al., 2021): https://arxiv.org/abs/2103.16584 PHM Linear Layer Illustration

Bayer AG 26 Aug 11, 2022
A video scene detection algorithm is designed to detect a variety of different scenes within a video

Scene-Change-Detection - A video scene detection algorithm is designed to detect a variety of different scenes within a video. There is a very simple definition for a scene: It is a series of logical

1 Jan 04, 2022
Attentive Implicit Representation Networks (AIR-Nets)

Attentive Implicit Representation Networks (AIR-Nets) Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV) teaser.mo

29 Dec 07, 2022
Semi-supervised Implicit Scene Completion from Sparse LiDAR

Semi-supervised Implicit Scene Completion from Sparse LiDAR Paper Created by Pengfei Li, Yongliang Shi, Tianyu Liu, Hao Zhao, Guyue Zhou and YA-QIN ZH

114 Nov 30, 2022
Official implementation of Self-supervised Graph Attention Networks (SuperGAT), ICLR 2021.

SuperGAT Official implementation of Self-supervised Graph Attention Networks (SuperGAT). This model is presented at How to Find Your Friendly Neighbor

Dongkwan Kim 127 Dec 28, 2022
PyTorch wrappers for using your model in audacity!

audacitorch This package contains utilities for prepping PyTorch audio models for use in Audacity. More specifically, it provides abstract classes for

Hugo Flores García 130 Dec 14, 2022
TYolov5: A Temporal Yolov5 Detector Based on Quasi-Recurrent Neural Networks for Real-Time Handgun Detection in Video

TYolov5: A Temporal Yolov5 Detector Based on Quasi-Recurrent Neural Networks for Real-Time Handgun Detection in Video Timely handgun detection is a cr

Mario Duran-Vega 18 Dec 26, 2022
SparseInst: Sparse Instance Activation for Real-Time Instance Segmentation, CVPR 2022

SparseInst 🚀 A simple framework for real-time instance segmentation, CVPR 2022 by Tianheng Cheng, Xinggang Wang†, Shaoyu Chen, Wenqiang Zhang, Qian Z

Hust Visual Learning Team 458 Jan 05, 2023
Auto Seg-Loss: Searching Metric Surrogates for Semantic Segmentation

Auto-Seg-Loss By Hao Li, Chenxin Tao, Xizhou Zhu, Xiaogang Wang, Gao Huang, Jifeng Dai This is the official implementation of the ICLR 2021 paper Auto

61 Dec 21, 2022
Raindrop strategy for Irregular time series

Graph-Guided Network For Irregularly Sampled Multivariate Time Series Overview This repository contains processed datasets and implementation code for

Zitnik Lab @ Harvard 74 Jan 03, 2023
Official code for 'Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Learning' [ICCV 2021]

RTFM This repo contains the Pytorch implementation of our paper: Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Lear

Yu Tian 242 Jan 08, 2023
This is an example of a reproducible modelling project

An example of a reproducible modelling project What are we doing? This example was created for the 2021 fall lecture series of Stanford's Center for O

Armin Thomas 2 Oct 26, 2021
Official implementation for: Blended Diffusion for Text-driven Editing of Natural Images.

Blended Diffusion for Text-driven Editing of Natural Images Blended Diffusion for Text-driven Editing of Natural Images Omri Avrahami, Dani Lischinski

328 Dec 30, 2022