(CVPR 2022 - oral) Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry

Overview

Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry

Official implementation of the paper

Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry

CVPR 2022 [oral]

Gwangbin Bae, Ignas Budvytis, and Roberto Cipolla

[arXiv]

We present MaGNet (Monocular and Geometric Network), a novel framework for fusing single-view depth probability with multi-view geometry, to improve the accuracy, robustness and efficiency of multi-view depth estimation. For each frame, MaGNet estimates a single-view depth probability distribution, parameterized as a pixel-wise Gaussian. The distribution estimated for the reference frame is then used to sample per-pixel depth candidates. Such probabilistic sampling enables the network to achieve higher accuracy while evaluating fewer depth candidates. We also propose depth consistency weighting for the multi-view matching score, to ensure that the multi-view depth is consistent with the single-view predictions. The proposed method achieves state-of-the-art performance on ScanNet, 7-Scenes and KITTI. Qualitative evaluation demonstrates that our method is more robust against challenging artifacts such as texture-less/reflective surfaces and moving objects.

Datasets

We evaluated MaGNet on ScanNet, 7-Scenes and KITTI

ScanNet

  • In order to download ScanNet, you should submit an agreement to the Terms of Use. Please follow the instructions in this link.
  • The folder should be organized as

/path/to/ScanNet
/path/to/ScanNet/scans
/path/to/ScanNet/scans/scene0000_00 ...
/path/to/ScanNet/scans_test
/path/to/ScanNet/scans_test/scene0707_00 ...

7-Scenes

  • Download all seven scenes (Chess, Fire, Heads, Office, Pumpkin, RedKitchen, Stairs) from this link.
  • The folder should be organized as:

/path/to/SevenScenes
/path/to/SevenScenes/chess ...

KITTI

  • Download raw data from this link.
  • Download depth maps from this link
  • The folder should be organized as:

/path/to/KITTI
/path/to/KITTI/rawdata
/path/to/KITTI/rawdata/2011_09_26 ...
/path/to/KITTI/train
/path/to/KITTI/train/2011_09_26_drive_0001_sync ...
/path/to/KITTI/val
/path/to/KITTI/val/2011_09_26_drive_0002_sync ...

Download model weights

Download model weights by

python ckpts/download.py

If some files are not downloaded properly, download them manually from this link and place the files under ./ckpts.

Install dependencies

We recommend using a virtual environment.

python3.6 -m venv --system-site-packages ./venv
source ./venv/bin/activate

Install the necessary dependencies by

python3.6 -m pip install -r requirements.txt

Test scripts

If you wish to evaluate the accuracy of our D-Net (single-view), run

python test_DNet.py ./test_scripts/dnet/scannet.txt
python test_DNet.py ./test_scripts/dnet/7scenes.txt
python test_DNet.py ./test_scripts/dnet/kitti_eigen.txt
python test_DNet.py ./test_scripts/dnet/kitti_official.txt

You should get the following results:

Dataset abs_rel abs_diff sq_rel rmse rmse_log irmse log_10 silog a1 a2 a3 NLL
ScanNet 0.1186 0.2070 0.0493 0.2708 0.1461 0.1086 0.0515 10.0098 0.8546 0.9703 0.9928 2.2352
7-Scenes 0.1339 0.2209 0.0549 0.2932 0.1677 0.1165 0.0566 12.8807 0.8308 0.9716 0.9948 2.7941
KITTI (eigen) 0.0605 1.1331 0.2086 2.4215 0.0921 0.0075 0.0261 8.4312 0.9602 0.9946 0.9989 2.6443
KITTI (official) 0.0629 1.1682 0.2541 2.4708 0.1021 0.0080 0.0270 9.5752 0.9581 0.9905 0.9971 1.7810

In order to evaluate the accuracy of the full pipeline (multi-view), run

python test_MaGNet.py ./test_scripts/magnet/scannet.txt
python test_MaGNet.py ./test_scripts/magnet/7scenes.txt
python test_MaGNet.py ./test_scripts/magnet/kitti_eigen.txt
python test_MaGNet.py ./test_scripts/magnet/kitti_official.txt

You should get the following results:

Dataset abs_rel abs_diff sq_rel rmse rmse_log irmse log_10 silog a1 a2 a3 NLL
ScanNet 0.0810 0.1466 0.0302 0.2098 0.1101 0.1055 0.0351 8.7686 0.9298 0.9835 0.9946 0.1454
7-Scenes 0.1257 0.2133 0.0552 0.2957 0.1639 0.1782 0.0527 13.6210 0.8552 0.9715 0.9935 1.5605
KITTI (eigen) 0.0535 0.9995 0.1623 2.1584 0.0826 0.0566 0.0235 7.4645 0.9714 0.9958 0.9990 1.8053
KITTI (official) 0.0503 0.9135 0.1667 1.9707 0.0848 0.2423 0.0219 7.9451 0.9769 0.9941 0.9979 1.4750

Training scripts

Coming soon

Citation

If you find our work useful in your research please consider citing our paper:

@InProceedings{Bae2022,
  title = {Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry}
  author = {Gwangbin Bae and Ignas Budvytis and Roberto Cipolla},
  booktitle = {Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year = {2022}                         
}
Owner
Bae, Gwangbin
PhD student in Computer Vision @ University of Cambridge
Bae, Gwangbin
Monocular 3D Object Detection: An Extrinsic Parameter Free Approach (CVPR2021)

Monocular 3D Object Detection: An Extrinsic Parameter Free Approach (CVPR2021) Yunsong Zhou, Yuan He, Hongzi Zhu, Cheng Wang, Hongyang Li, Qinhong Jia

Yunsong Zhou 51 Dec 14, 2022
PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection?

PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection? (ICCV 2021), Dennis Park*, Rares Ambrus*, Vitor Guizilini, Jie Li, and Adrien Gaidon.

Toyota Research Institute - Machine Learning 364 Dec 27, 2022
This repository accompanies the ACM TOIS paper "What can I cook with these ingredients?" - Understanding cooking-related information needs in conversational search

In this repository you find data that has been gathered when conducting in-situ experiments in a conversational cooking setting. These data include tr

6 Sep 22, 2022
[CVPR 2021] MiVOS - Mask Propagation module. Reproduced STM (and better) with training code :star2:. Semi-supervised video object segmentation evaluation.

MiVOS (CVPR 2021) - Mask Propagation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [arXiv] [Paper PDF] [Project Page] [Papers with Code] This repo impleme

Rex Cheng 106 Jan 03, 2023
BirdCLEF 2021 - Birdcall Identification 4th place solution

BirdCLEF 2021 - Birdcall Identification 4th place solution My solution detail kaggle discussion Inference Notebook (best submission) Environment Use K

tattaka 42 Jan 02, 2023
A python implementation of Yolov5 to detect fire or smoke in the wild in Jetson Xavier nx and Jetson nano

yolov5-fire-smoke-detect-python A python implementation of Yolov5 to detect fire or smoke in the wild in Jetson Xavier nx and Jetson nano You can see

20 Dec 15, 2022
Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning

Manifold-SCA Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning The repo is org

Yuanyuan Yuan 172 Dec 29, 2022
Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance

Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance Project Page | Paper | Data This repository contains an implementatio

Lior Yariv 521 Dec 30, 2022
A Japanese Medical Information Extraction Toolkit

JaMIE: a Japanese Medical Information Extraction toolkit Joint Japanese Medical Problem, Modality and Relation Recognition The Train/Test phrases requ

7 Dec 12, 2022
CVPR '21: In the light of feature distributions: Moment matching for Neural Style Transfer

In the light of feature distributions: Moment matching for Neural Style Transfer (CVPR 2021) This repository provides code to recreate results present

Nikolai Kalischek 49 Oct 13, 2022
Official implementation of NeuralFusion: Online Depth Map Fusion in Latent Space

NeuralFusion This is the official implementation of NeuralFusion: Online Depth Map Fusion in Latent Space. We provide code to train the proposed pipel

53 Jan 01, 2023
Custom studies about block sparse attention.

Block Sparse Attention 研究总结 本人近半年来对Block Sparse Attention(块稀疏注意力)的研究总结(持续更新中)。按时间顺序,主要分为如下三部分: PyTorch 自定义 CUDA 算子——以矩阵乘法为例 基于 Triton 的 Block Sparse A

Chen Kai 2 Jan 09, 2022
Selective Wavelet Attention Learning for Single Image Deraining

SWAL Code for Paper "Selective Wavelet Attention Learning for Single Image Deraining" Prerequisites Python 3 PyTorch Models We provide the models trai

Bobo 9 Jun 17, 2022
Multi-modal co-attention for drug-target interaction annotation and Its Application to SARS-CoV-2

CoaDTI Multi-modal co-attention for drug-target interaction annotation and Its Application to SARS-CoV-2 Abstract Environment The test was conducted i

Layne_Huang 7 Nov 14, 2022
Paper: De-rendering Stylized Texts

Paper: De-rendering Stylized Texts Wataru Shimoda1, Daichi Haraguchi2, Seiichi Uchida2, Kota Yamaguchi1 1CyberAgent.Inc, 2 Kyushu University Accepted

CyberAgent AI Lab 55 Dec 18, 2022
Model serving at scale

Run inference at scale Cortex is an open source platform for large-scale machine learning inference workloads. Workloads Realtime APIs - respond to pr

Cortex Labs 7.9k Jan 06, 2023
This is a deep learning-based method to segment deep brain structures and a brain mask from T1 weighted MRI.

DBSegment This tool generates 30 deep brain structures segmentation, as well as a brain mask from T1-Weighted MRI. The whole procedure should take ~1

Luxembourg Neuroimaging (Platform OpNeuroImg) 2 Oct 25, 2022
The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track.

ISC21-Descriptor-Track-1st The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track. You can check our solution

lyakaap 73 Dec 24, 2022
Code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data by Minimizing Predictive Variance

Semi-supervised Deep Kernel Learning This is the code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data

58 Oct 26, 2022
Source code for "Pack Together: Entity and Relation Extraction with Levitated Marker"

PL-Marker Source code for Pack Together: Entity and Relation Extraction with Levitated Marker. Quick links Overview Setup Install Dependencies Data Pr

THUNLP 173 Dec 30, 2022