Code for our paper "Transfer Learning for Sequence Generation: from Single-source to Multi-source" in ACL 2021.

Overview

TRICE: a task-agnostic transferring framework for multi-source sequence generation

This is the source code of our work Transfer Learning for Sequence Generation: from Single-source to Multi-source (ACL 2021).

We propose TRICE, a task-agnostic Transferring fRamework for multI-sourCe sEquence generation, for transferring pretrained models to multi-source sequence generation tasks (e.g., automatic post-editing, multi-source translation, and multi-document summarization). TRICE achieves new state-of-the-art results on the WMT17 APE task and the multi-source translation task using the WMT14 test set. Welcome to take a quick glance at our blog.

The implementation is on top of the open-source NMT toolkit THUMT.

@misc{huang2021transfer,
      title={Transfer Learning for Sequence Generation: from Single-source to Multi-source}, 
      author={Xuancheng Huang and Jingfang Xu and Maosong Sun and Yang Liu},
      year={2021},
      eprint={2105.14809},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

Contents

Prerequisites

  • Python >= 3.6
  • tensorflow-cpu >= 2.0
  • torch >= 1.7
  • transformers >= 3.4
  • sentencepiece >= 0.1

Pretrained model

We adopt mbart-large-cc25 in our experiments. Other sequence-to-sequence pretrained models can also be used with only a few modifications.

If your GPUs do not have enough memories, you can prune the original large vocabulary (25k) to a small vocabulary (e.g., 3k) with little performance loss.

Finetuning

Single-source finetuning

PYTHONPATH=${path_to_TRICE} \
python ${path_to_TRICE}/thumt/bin/trainer.py \
    --input ${train_src1} ${train_src2} ${train_trg} \
    --vocabulary ${vocab_joint} ${vocab_joint} \
    --validation ${dev_src1} ${dev_src2} \
    --references ${dev_ref} \
    --model transformer --half --hparam_set big \
    --output single_finetuned \
    --parameters \
fixed_batch_size=false,batch_size=820,train_steps=120000,update_cycle=5,device_list=[0,1,2,3],\
keep_checkpoint_max=2,save_checkpoint_steps=2000,\
eval_steps=2001,decode_alpha=1.0,decode_batch_size=16,keep_top_checkpoint_max=1,\
attention_dropout=0.1,relu_dropout=0.1,residual_dropout=0.1,learning_rate=5e-05,warmup_steps=4000,initial_learning_rate=5e-8,\
separate_encode=false,separate_cross_att=false,segment_embedding=false,\
input_type="single_random",adapter_type="None",num_fine_encoder_layers=0,normalization="after",\
src_lang_tok="en_XX",hyp_lang_tok="de_DE",tgt_lang_tok="de_DE",mbart_model_code="facebook/mbart-large-cc25",\
spm_path="sentence.bpe.model",pad="<pad>",bos="<s>",eos="</s>",unk="<unk>"

Multi-source finetuning

PYTHONPATH=${path_to_TRICE} \
python ${path_to_TRICE}/thumt/bin/trainer.py \
    --input ${train_src1} ${train_src2} ${train_tgt} \
    --vocabulary ${vocab_joint} ${vocab_joint} \
    --validation ${dev_src1} ${dev_src2} \
    --references ${dev_ref} \
    --model transformer --half --hparam_set big \
    --checkpoint single_finetuned/eval/model-best.pt \
    --output multi_finetuned \
    --parameters \
fixed_batch_size=false,batch_size=820,train_steps=120000,update_cycle=5,device_list=[0,1,2,3],\
keep_checkpoint_max=2,save_checkpoint_steps=2000,\
eval_steps=2001,decode_alpha=1.0,decode_batch_size=16,keep_top_checkpoint_max=1,\
attention_dropout=0.1,relu_dropout=0.1,residual_dropout=0.1,learning_rate=5e-05,warmup_steps=4000,initial_learning_rate=5e-8,special_learning_rate=5e-04,special_var_name="adapter",\
separate_encode=false,separate_cross_att=true,segment_embedding=true,\
input_type="",adapter_type="Cross-attn",num_fine_encoder_layers=1,normalization="after",\
src_lang_tok="en_XX",hyp_lang_tok="de_DE",tgt_lang_tok="de_DE",mbart_model_code="facebook/mbart-large-cc25",\
spm_path="sentence.bpe.model",pad="<pad>",bos="<s>",eos="</s>",unk="<unk>"

Arguments to be explained

** special_learning_rate: if a variable's name contains special_var_name, the learning rate of it will be special_learning_rate. We give the fine encoder a larger learning rate.
** separate_encode: whether to encode multiple sources separately before the fine encoder.
** separate_cross_att: whether to use separated cross-attention described in our paper.
** segment_embedding: whether to use sinusoidal segment embedding described in our paper.
** input_type: "single_random" for single-source finetuning , "" for multi-source finetuning.
** adapter_type: "None" for no fine encoder, "Cross-attn" for fine encoder with cross-attention.
** num_fine_encoder_layers: number of fine encoder layers.
** src_lang_tok: language token for the first source sentence. Please refer to here for language tokens for all 25 languages.
** hyp_lang_tok: language token for the second source sentence.
** tgt_lang_tok: language token for the target sentence.
** mbart_model_code: model code for transformers.
** spm_path: sentence piece model (can download from here).

Explanations for other arguments could be found in the user manual of THUMT.

Inference

PYTHONPATH=${path_to_TRICE} \
python ${path_to_TRICE}/thumt/bin/translator.py \
  --input ${test_src1} ${test_src2} --output ${test_tgt} \
  --vocabulary ${vocab_joint} ${vocab_joint} \
  --checkpoints multi_finetuned/eval/model-best.pt \
  --model transformer --half \
  --parameters device_list=[0,1,2,3],decode_alpha=1.0,decode_batch_size=32
# recover sentence piece tokenization
...
# calculate BLEU
...

Contact

If you have questions, suggestions and bug reports, please email [email protected].

Owner
THUNLP-MT
Machine Translation Group, Natural Language Processing Lab at Tsinghua University (THUNLP). Please refer to https://github.com/thunlp for more NLP resources.
THUNLP-MT
The guide to tackle with the Text Summarization

The guide to tackle with the Text Summarization

Takahiro Kubo 1.2k Dec 30, 2022
voice2json is a collection of command-line tools for offline speech/intent recognition on Linux

Command-line tools for speech and intent recognition on Linux

Michael Hansen 988 Jan 04, 2023
Repository to hold code for the cap-bot varient that is being presented at the SIIC Defence Hackathon 2021.

capbot-siic Repository to hold code for the cap-bot varient that is being presented at the SIIC Defence Hackathon 2021. Problem Inspiration A plethora

Aryan Kargwal 19 Feb 17, 2022
CLIPfa: Connecting Farsi Text and Images

CLIPfa: Connecting Farsi Text and Images OpenAI released the paper Learning Transferable Visual Models From Natural Language Supervision in which they

Sajjad Ayoubi 66 Dec 14, 2022
Korean Sentence Embedding Repository

Korean-Sentence-Embedding 🍭 Korean sentence embedding repository. You can download the pre-trained models and inference right away, also it provides

80 Jan 02, 2023
Tool to add main subject to items on Wikidata using a WMFs CirrusSearch for named entity recognition or a manually supplied list of QIDs

ItemSubjector Tool made to add main subject statements to items based on the title using a home-brewed CirrusSearch-based Named Entity Recognition alg

Dennis Priskorn 9 Nov 17, 2022
SASE : Self-Adaptive noise distribution network for Speech Enhancement with heterogeneous data of Cross-Silo Federated learning

SASE : Self-Adaptive noise distribution network for Speech Enhancement with heterogeneous data of Cross-Silo Federated learning We propose a SASE mode

Tower 1 Nov 20, 2021
Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

730 Jan 09, 2023
原神抽卡记录数据集-Genshin Impact gacha data

提要 持续收集原神抽卡记录中 可以使用抽卡记录导出工具导出抽卡记录的json,将json文件发送至[email protected],我会在清除个人信息后

117 Dec 27, 2022
Easy-to-use CPM for Chinese text generation

CPM 项目描述 CPM(Chinese Pretrained Models)模型是北京智源人工智能研究院和清华大学发布的中文大规模预训练模型。官方发布了三种规模的模型,参数量分别为109M、334M、2.6B,用户需申请与通过审核,方可下载。 由于原项目需要考虑大模型的训练和使用,需要安装较为复杂

382 Jan 07, 2023
Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

Udit Arora 19 Oct 28, 2022
Question answering app is used to answer for a user given question from user given text.

Question answering app is used to answer for a user given question from user given text.It is created using HuggingFace's transformer pipeline and streamlit python packages.

Siva Prakash 3 Apr 05, 2022
Python generation script for BitBirds

BitBirds generation script Intro This is published under MIT license, which means you can do whatever you want with it - entirely at your own risk. Pl

286 Dec 06, 2022
StarGAN - Official PyTorch Implementation

StarGAN - Official PyTorch Implementation ***** New: StarGAN v2 is available at https://github.com/clovaai/stargan-v2 ***** This repository provides t

Yunjey Choi 5.1k Dec 30, 2022
2021 2학기 데이터크롤링 기말프로젝트

공지 주제 웹 크롤링을 이용한 취업 공고 스케줄러 스케줄 주제 정하기 코딩하기 핵심 코드 설명 + 피피티 구조 구상 // 12/4 토 피피티 + 스크립트(대본) 제작 + 녹화 // ~ 12/10 ~ 12/11 금~토 영상 편집 // ~12/11 토 웹크롤러 사람인_평균

Choi Eun Jeong 2 Aug 16, 2022
BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents

BROS (BERT Relying On Spatiality) is a pre-trained language model focusing on text and layout for better key information extraction from documents. Given the OCR results of the document image, which

Clova AI Research 94 Dec 30, 2022
Big Bird: Transformers for Longer Sequences

BigBird, is a sparse-attention based transformer which extends Transformer based models, such as BERT to much longer sequences. Moreover, BigBird comes along with a theoretical understanding of the c

Google Research 457 Dec 23, 2022
Count the frequency of letters or words in a text file and show a graph.

Word Counter By EBUS Coding Club Count the frequency of letters or words in a text file and show a graph. Requirements Python 3.9 or higher matplotlib

EBUS Coding Club 0 Apr 09, 2022
Uses Google's gTTS module to easily create robo text readin' on command.

Tool to convert text to speech, creating files for later use. TTRS uses Google's gTTS module to easily create robo text readin' on command.

0 Jun 20, 2021
A program that uses real statistics to choose the best times to bet on BloxFlip's crash gamemode

Bloxflip Smart Bet A program that uses real statistics to choose the best times to bet on BloxFlip's crash gamemode. https://bloxflip.com/crash. THIS

43 Jan 05, 2023