BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents

Related tags

Text Data & NLPbros
Overview

BROS

Introduction

BROS (BERT Relying On Spatiality) is a pre-trained language model focusing on text and layout for better key information extraction from documents. Given the OCR results of the document image, which are text and bounding box pairs, it can perform various key information extraction tasks, such as extracting an ordered item list from receipts. For more details, please refer to our paper:

BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents
Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park
AAAI 2022 (to appear)

Pre-trained models

name # params Hugging Face - Models
bros-base-uncased < 110M naver-clova-ocr/bros-base-uncased
bros-large-uncased < 340M naver-clova-ocr/bros-large-uncased

Model usage

The example code below is written with reference to LayoutLM.

import torch
from bros import BrosTokenizer, BrosModel


tokenizer = BrosTokenizer.from_pretrained("naver-clova-ocr/bros-base-uncased")
model = BrosModel.from_pretrained("naver-clova-ocr/bros-base-uncased")


width, height = 1280, 720

words = ["to", "the", "moon!"]
quads = [
    [638, 451, 863, 451, 863, 569, 638, 569],
    [877, 453, 1190, 455, 1190, 568, 876, 567],
    [632, 566, 1107, 566, 1107, 691, 632, 691],
]

bbox = []
for word, quad in zip(words, quads):
    n_word_tokens = len(tokenizer.tokenize(word))
    bbox.extend([quad] * n_word_tokens)

cls_quad = [0.0] * 8
sep_quad = [width, height] * 4
bbox = [cls_quad] + bbox + [sep_quad]

encoding = tokenizer(" ".join(words), return_tensors="pt")
input_ids = encoding["input_ids"]
attention_mask = encoding["attention_mask"]

bbox = torch.tensor([bbox])
bbox[:, :, [0, 2, 4, 6]] = bbox[:, :, [0, 2, 4, 6]] / width
bbox[:, :, [1, 3, 5, 7]] = bbox[:, :, [1, 3, 5, 7]] / height

outputs = model(input_ids=input_ids, bbox=bbox, attention_mask=attention_mask)
last_hidden_state = outputs.last_hidden_state

print("- last_hidden_state")
print(last_hidden_state)
print()
print("- last_hidden_state.shape")
print(last_hidden_state.shape)

Result

- last_hidden_state
tensor([[[-0.0342,  0.2487, -0.2819,  ...,  0.1495,  0.0218,  0.0484],
         [ 0.0792, -0.0040, -0.0127,  ..., -0.0918,  0.0810,  0.0419],
         [ 0.0808, -0.0918,  0.0199,  ..., -0.0566,  0.0869, -0.1859],
         [ 0.0862,  0.0901,  0.0473,  ..., -0.1328,  0.0300, -0.1613],
         [-0.2925,  0.2539,  0.1348,  ...,  0.1988, -0.0148, -0.0982],
         [-0.4160,  0.2135, -0.0390,  ...,  0.6908, -0.2985,  0.1847]]],
       grad_fn=
   
    )

- last_hidden_state.shape
torch.Size([1, 6, 768])

   

Fine-tuning examples

Please refer to docs/finetuning_examples.md.

Acknowledgements

We referenced the code of LayoutLM when implementing BROS in the form of Hugging Face - transformers.
In this repository, we used two public benchmark datasets, FUNSD and SROIE.

License

Copyright 2022-present NAVER Corp.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Owner
Clova AI Research
Open source repository of Clova AI Research, NAVER & LINE
Clova AI Research
A simple recipe for training and inferencing Transformer architecture for Multi-Task Learning on custom datasets. You can find two approaches for achieving this in this repo.

multitask-learning-transformers A simple recipe for training and inferencing Transformer architecture for Multi-Task Learning on custom datasets. You

Shahrukh Khan 48 Jan 02, 2023
Official Pytorch implementation of Test-Agnostic Long-Tailed Recognition by Test-Time Aggregating Diverse Experts with Self-Supervision.

This repository is the official Pytorch implementation of Test-Agnostic Long-Tailed Recognition by Test-Time Aggregating Diverse Experts with Self-Supervision.

vanint 101 Dec 30, 2022
A framework for implementing federated learning

This is partly the reproduction of the paper of [Privacy-Preserving Federated Learning in Fog Computing](DOI: 10.1109/JIOT.2020.2987958. 2020)

DavidChen 46 Sep 23, 2022
Entity Disambiguation as text extraction (ACL 2022)

ExtEnD: Extractive Entity Disambiguation This repository contains the code of ExtEnD: Extractive Entity Disambiguation, a novel approach to Entity Dis

Sapienza NLP group 121 Jan 03, 2023
AI-powered literature discovery and review engine for medical/scientific papers

AI-powered literature discovery and review engine for medical/scientific papers paperai is an AI-powered literature discovery and review engine for me

NeuML 819 Dec 30, 2022
Open Source Neural Machine Translation in PyTorch

OpenNMT-py: Open-Source Neural Machine Translation OpenNMT-py is the PyTorch version of the OpenNMT project, an open-source (MIT) neural machine trans

OpenNMT 5.8k Jan 04, 2023
An IVR Chatbot which can exponentially reduce the burden of companies as well as can improve the consumer/end user experience.

IVR-Chatbot Achievements 🏆 Team Uhtred won the Maverick 2.0 Bot-a-thon 2021 organized by AbInbev India. ❓ Problem Statement As we all know that, lot

ARYAMAAN PANDEY 9 Dec 08, 2022
CoSENT 比Sentence-BERT更有效的句向量方案

CoSENT 比Sentence-BERT更有效的句向量方案

苏剑林(Jianlin Su) 201 Dec 12, 2022
A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis

WaveGlow A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis Quick Start: Install requirements: pip install

Yuchao Zhang 204 Jul 14, 2022
Python library for parsing resumes using natural language processing and machine learning

CVParser Python library for parsing resumes using natural language processing and machine learning. Setup Installation on Linux and Mac OS Follow the

nafiu 0 Jul 29, 2021
Calibre recipe to convert latest issue of Analyse & Kritik into an ebook

Calibre Recipe für "Analyse & Kritik" Dies ist ein "Recipe" für die Konvertierung der aktuellen Ausgabe der Zeitung Analyse & Kritik in ein Ebook. Es

Henning 3 Jan 04, 2022
A BERT-based reverse dictionary of Korean proverbs

Wisdomify A BERT-based reverse-dictionary of Korean proverbs. 김유빈 : 모델링 / 데이터 수집 / 프로젝트 설계 / back-end 김종윤 : 데이터 수집 / 프로젝트 설계 / front-end / back-end 임용

94 Dec 08, 2022
Milaan Parmar / Милан пармар / _米兰 帕尔马 170 Dec 13, 2022
Huggingface Transformers + Adapters = ❤️

adapter-transformers A friendly fork of HuggingFace's Transformers, adding Adapters to PyTorch language models adapter-transformers is an extension of

AdapterHub 1.2k Jan 09, 2023
Python library to make development of portfolio analysis faster and easier

Trafalgar Python library to make development of portfolio analysis faster and easier Installation 🔥 For the moment, Trafalgar is still in beta develo

Santosh Passoubady 641 Jan 01, 2023
End-to-end MLOps pipeline of a BERT model for emotion classification.

image source EmoBERT-MLOps The goal of this repository is to build an end-to-end MLOps pipeline based on the MLOps course from Made with ML, but this

Dimitre Oliveira 4 Nov 06, 2022
Google AI 2018 BERT pytorch implementation

BERT-pytorch Pytorch implementation of Google AI's 2018 BERT, with simple annotation BERT 2018 BERT: Pre-training of Deep Bidirectional Transformers f

Junseong Kim 5.3k Jan 07, 2023
Implementation of Natural Language Code Search in the project CodeBERT: A Pre-Trained Model for Programming and Natural Languages.

CodeBERT-Implementation In this repo we have replicated the paper CodeBERT: A Pre-Trained Model for Programming and Natural Languages. We are interest

Tanuj Sur 4 Jul 01, 2022
Some embedding layer implementation using ivy library

ivy-manual-embeddings Some embedding layer implementation using ivy library. Just for fun. It is based on NYCTaxiFare dataset from kaggle (cut down to

Ishtiaq Hussain 2 Feb 10, 2022