Cache-house - Caching tool for python, working with Redis single instance and Redis cluster mode

Overview

Caching tool for python, working with Redis single instance and Redis cluster mode

PyPi link

Installation

 $ pip install cache-house 

or with poetry

poetry add cache-house

Quick Start


cache decorator work with async and sync functions

from cache_house.backends.redis_backend import RedisCache
from cache_house.cache import cache
import asyncio

RedisCache.init()

@cache() # default expire time is 180 seconds
async def test_cache(a: int,b: int):
    print("async cached")
    return [a,b]

@cache()
def test_cache_1(a: int, b: int):
    print("cached")
    return [a, b]


if __name__ == "__main__":
    print(test_cache_1(3,4))
    print(asyncio.run(test_cache(1,2)))

Check stored cache key

➜ $ rdcli KEYS "*"
1) cachehouse:main:8f65aed1010f0062a783c83eb430aca0
2) cachehouse:main:f665833ea64e4fc32653df794257ca06

Setup Redis cache instance


You can pass all redis-py arguments to RedisCache.init method and additional arguments :

def RedisCache.init(
        host: str = "localhost",
        port: int = 6379,
        encoder: Callable[..., Any] = ...,
        decoder: Callable[..., Any] = ...,
        namespace: str = ...,
        key_prefix: str = ...,
        key_builder: Callable[..., Any] = ...,
        password: str = ...,
        db: int = ...,
        **kwargs
    )

or you can set your own encoder and decoder functions

from cache_house.backends.redis_backend import RedisCache

def custom_encoder(data):
    return json.dumps(data)

def custom_decoder(data):
    return json.loads(data)

RedisCache.init(encoder=custom_encoder, decoder=custom_decoder)

Default encoder and decoder is pickle module.


Setup Redis Cluster cache instance


All manipulation with RedisCache same with a RedisClusterCache

from cache_house.backends.redis_cluster_backend import RedisClusterCache
from cache_house.cache import cache

RedisClusterCache.init()

@cache()
async def test_cache(a: int,b: int):
    print("cached")
    return [a,b]
def RedisClusterCache.init(
        cls,
        host="localhost",
        port=6379,
        encoder: Callable[..., Any] = pickle_encoder,
        decoder: Callable[..., Any] = pickle_decoder,
        startup_nodes=None,
        cluster_error_retry_attempts: int = 3,
        require_full_coverage: bool = True,
        skip_full_coverage_check: bool = False,
        reinitialize_steps: int = 10,
        read_from_replicas: bool = False,
        namespace: str = DEFAULT_NAMESPACE,
        key_prefix: str = DEFAULT_PREFIX,
        key_builder: Callable[..., Any] = key_builder,
        **kwargs,
    )

You can set expire time (seconds) , namespace and key prefix in cache decorator


@cache(expire=30, namespace="app", key_prefix="test") 
async def test_cache(a: int,b: int):
    print("cached")
    return [a,b]


if __name__ == "__main__":
    print(asyncio.run(test_cache(1,2)))

Check stored cache

rdcli KEYS "*"
1) test:app:f665833ea64e4fc32653df794257ca06

If your function works with non-standard data types, you can pass custom encoder and decoder functions to the cache decorator.


import asyncio
import json
from cache_house.backends.redis_backend import RedisCache
from cache_house.cache import cache

RedisCache.init()

def custom_encoder(data):
    return json.dumps(data)

def custom_decoder(data):
    return json.loads(data)

@cache(expire=30, encoder=custom_encoder, decoder=custom_decoder, namespace="custom")
async def test_cache(a: int, b: int):
    print("async cached")
    return {"a": a, "b": b}


@cache(expire=30)
def test_cache_1(a: int, b: int):
    print("cached")
    return [a, b]


if __name__ == "__main__":
    print(asyncio.run(test_cache(1, 2)))
    print(test_cache_1(3, 4))

Check stored cache

rdcli KEYS "*"
1) cachehouse:main:8f65aed1010f0062a783c83eb430aca0
2) cachehouse:custom:f665833ea64e4fc32653df794257ca06

All examples works fine with Redis Cluster and single Redis instance.


Contributing

Free to open issue and send PR

cache-house supports Python >= 3.7

You might also like...
Qwerkey is a social media platform for connecting and learning more about mechanical keyboards built on React and Redux in the frontend and Flask in the backend on top of a PostgreSQL database.

Flask React Project This is the backend for the Flask React project. Getting started Clone this repository (only this branch) git clone https://github

A RESTful API for creating and monitoring resource components of a hypothetical build system. Built with FastAPI and pydantic. Complete with testing and CI.
A RESTful API for creating and monitoring resource components of a hypothetical build system. Built with FastAPI and pydantic. Complete with testing and CI.

diskspace-monitor-CRUD Background The build system is part of a large environment with a multitude of different components. Many of the components hav

Cookiecutter API for creating Custom Skills for Azure Search using Python and Docker

cookiecutter-spacy-fastapi Python cookiecutter API for quick deployments of spaCy models with FastAPI Azure Search The API interface is compatible wit

Docker image with Uvicorn managed by Gunicorn for high-performance FastAPI web applications in Python 3.6 and above with performance auto-tuning. Optionally with Alpine Linux.
Docker image with Uvicorn managed by Gunicorn for high-performance FastAPI web applications in Python 3.6 and above with performance auto-tuning. Optionally with Alpine Linux.

Supported tags and respective Dockerfile links python3.8, latest (Dockerfile) python3.7, (Dockerfile) python3.6 (Dockerfile) python3.8-slim (Dockerfil

 Turns your Python functions into microservices with web API, interactive GUI, and more.
Turns your Python functions into microservices with web API, interactive GUI, and more.

Instantly turn your Python functions into production-ready microservices. Deploy and access your services via HTTP API or interactive UI. Seamlessly export your services into portable, shareable, and executable files or Docker images.

Mixer -- Is a fixtures replacement. Supported Django, Flask, SqlAlchemy and custom python objects.

The Mixer is a helper to generate instances of Django or SQLAlchemy models. It's useful for testing and fixture replacement. Fast and convenient test-

Beyonic API Python official client library simplified examples using Flask, Django and Fast API.

Beyonic API Python Examples. The beyonic APIs Doc Reference: https://apidocs.beyonic.com/ To start using the Beyonic API Python API, you need to start

API using python and Fastapi framework

Welcome 👋 CFCApi is a API DEVELOPMENT PROJECT UNDER CODE FOR COMMUNITY ! Project Walkthrough 🚀 CFCApi run on Python using FASTapi Framework Docs The

Restful Api developed with Flask using Prometheus and Grafana for monitoring and containerization with Docker :rocket:
Restful Api developed with Flask using Prometheus and Grafana for monitoring and containerization with Docker :rocket:

Hephaestus 🚀 In Greek mythology, Hephaestus was either the son of Zeus and Hera or he was Hera's parthenogenous child. ... As a smithing god, Hephaes

Releases(v0.2.2)
API written using Fast API to manage events and implement a leaderboard / badge system.

Open Food Facts Events API written using Fast API to manage events and implement a leaderboard / badge system. Installation To run the API locally, ru

Open Food Facts 5 Jan 07, 2023
FastAPI Auth Starter Project

This is a template for FastAPI that comes with authentication preconfigured.

Oluwaseyifunmi Oyefeso 6 Nov 13, 2022
Sample project showing reliable data ingestion application using FastAPI and dramatiq

Create and deploy a reliable data ingestion service with FastAPI, SQLModel and Dramatiq This is the source code for the data ingestion service explain

François Voron 31 Nov 30, 2022
Lazy package to start your project using FastAPI✨

Fastapi-lazy 🦥 Utilities that you use in various projects made in FastAPI. Source Code: https://github.com/yezz123/fastapi-lazy Install the project:

Yasser Tahiri 95 Dec 29, 2022
FastAPI-PostgreSQL-Celery-RabbitMQ-Redis bakcend with Docker containerization

FastAPI - PostgreSQL - Celery - Rabbitmq backend This source code implements the following architecture: All the required database endpoints are imple

Juan Esteban Aristizabal 54 Nov 26, 2022
A FastAPI Middleware of joerick/pyinstrument to check your service performance.

fastapi_profiler A FastAPI Middleware of joerick/pyinstrument to check your service performance. 📣 Info A FastAPI Middleware of pyinstrument to check

LeoSun 107 Jan 05, 2023
SuperSaaSFastAPI - Python SaaS Boilerplate for building Software-as-Service (SAAS) apps with FastAPI, Vue.js & Tailwind

Python SaaS Boilerplate for building Software-as-Service (SAAS) apps with FastAP

Rudy Bekker 31 Jan 10, 2023
Local Telegram Bot With FastAPI & Ngrok

An easy local telegram bot server with python, fastapi and ngrok.

Ömer Faruk Özdemir 7 Dec 25, 2022
Drop-in MessagePack support for ASGI applications and frameworks

msgpack-asgi msgpack-asgi allows you to add automatic MessagePack content negotiation to ASGI applications (Starlette, FastAPI, Quart, etc.), with a s

Florimond Manca 128 Jan 02, 2023
cookiecutter template for web API with python

Python project template for Web API with cookiecutter What's this This provides the project template including minimum test/lint/typechecking package

Hitoshi Manabe 4 Jan 28, 2021
This repository contains learning resources for Python Fast API Framework and Docker

This repository contains learning resources for Python Fast API Framework and Docker, Build High Performing Apps With Python BootCamp by Lux Academy and Data Science East Africa.

Harun Mbaabu Mwenda 23 Nov 20, 2022
Prometheus exporter for several chia node statistics

prometheus-chia-exporter Prometheus exporter for several chia node statistics It's assumed that the full node, the harvester and the wallet run on the

30 Sep 19, 2022
Get MODBUS data from Sofar (K-TLX) inverter through LSW-3 or LSE module

SOFAR Inverter + LSW-3/LSE Small utility to read data from SOFAR K-TLX inverters through the Solarman (LSW-3/LSE) datalogger. Two scripts to get inver

58 Dec 29, 2022
Code for my FastAPI tutorial

FastAPI tutorial Code for my video tutorial FastAPI tutorial What is FastAPI? FastAPI is a high-performant REST API framework for Python. It's built o

José Haro Peralta 9 Nov 15, 2022
Town / City geolocations with FastAPI & Mongo

geolocations-api United Kingdom Town / City geolocations with FastAPI & Mongo Build container To build a custom image or extend the api run the follow

Joe Gasewicz 3 Jan 26, 2022
Socket.IO integration for Flask applications.

Flask-SocketIO Socket.IO integration for Flask applications. Installation You can install this package as usual with pip: pip install flask-socketio

Miguel Grinberg 4.9k Jan 03, 2023
Utils for fastapi based services.

Installation pip install fastapi-serviceutils Usage For more details and usage see: readthedocs Development Getting started After cloning the repo

Simon Kallfass 31 Nov 25, 2022
Ready-to-use and customizable users management for FastAPI

FastAPI Users Ready-to-use and customizable users management for FastAPI Documentation: https://fastapi-users.github.io/fastapi-users/ Source Code: ht

FastAPI Users 2.3k Dec 30, 2022
A FastAPI Framework for things like Database, Redis, Logging, JWT Authentication and Rate Limits

A FastAPI Framework for things like Database, Redis, Logging, JWT Authentication and Rate Limits Install You can install this Library with: pip instal

Tert0 33 Nov 28, 2022
FastAPI with Docker and Traefik

Dockerizing FastAPI with Postgres, Uvicorn, and Traefik Want to learn how to build this? Check out the post. Want to use this project? Development Bui

51 Jan 06, 2023