Repository for the Demo of using DVC with PyCaret & MLOps (DVC Office Hours - 20th Jan, 2022)

Overview

Using DVC with PyCaret & FastAPI (Demo)

This repo contains all the resources for my demo explaining how to use DVC along with other interesting tools & frameworks like PyCaret & FastAPI for data & model versioning, experimentation with ML models & finally deploying these models quickly for inferencing.

This demo was presented at the DVC Office Hours on 20th Jan 2022.

Note: We will use Azure Blob Storage as our remote storage for this demo. To follow along, it is advised to either create an Azure account or use a different remote for storage.


Steps Followed for the Demo

0. Preliminaries

Create a virtual environment named dvc-demo & install required packages

python3 -m venv dvc-demo
source dvc-demo/bin/activate

pip install dvc[azure] pycaret fastapi uvicorn python-multipart

Initialize the repo with DVC tracking & create a data/ folder

mkdir dvc-pycaret-fastapi-demo
cd dvc-pycaret-fastapi-demo
git init
dvc init

git remote add origin https://github.com/tezansahu/dvc-pycaret-fastapi-demo.git

mkdir data

1. Tracking Data with DVC

We use the Heart Failure Prediction Dataset for this demo.

First, we download the heart.csv file & retain ~800 rows from this file in the data/ folder. (We will use the file with all the rows later - this is to simulate the change/increase in data that an ML workflow sees during its lifetime)

Track this data/heart.csv using DVC

dvc add data/heart.csv
git add data/heart.csv.dvc
git commit -m "add data - phase 1"

2. Setup the Remote for Storing Tracked Data & Models

  • Go to the Azure Portal & create a Storage Account (here, we name it dvcdemo) Creating a Storage Account on Azure

  • Within the storage account, create a Container (here, we name it demo20jan2022)

  • Obtain the Connection String from the storage account as follows: Obtaining the Connection String for a Storage Account on Azure

  • Install the Azure CLI from here & log into Azure from within the terminal using az login

Now, we store the tracked data in Azure:

dvc remote add -d storage azure://demo20jan2022/dvcstore
dvc remote modify --local storage connection_string <connection-string>

dvc push
git push origin main

3. ML Experimentation with PyCaret

Create the notebooks/ folders using mkdir notebook & download the notebooks/experimentation_with_pycaret.ipynb notebook from this repo into this notebooks/ folder.

Track this notebook with Git:

git add notebooks/
git commit -m "add ml training notebook"

Run all the cells mentioned under Phase 1 in the notebook. This involves basics of PyCaret:

  • Setting up a vanilla experiment with setup()
  • Comparing various classification models with compare_models()
  • Evaluating the preformance a model with evaluate_model()
  • Making predictions on the held-out eval data using predict_model()
  • Finalizing the model by training on the full training + eval data using finalize_model()
  • Saving the model pipeline using save_model()

This will create a model.pkl file in the models/ folder

4. Tracking Models with DVC

Now, we track the ML model using DVC & store it in our remote storage

dvc add models/model.pkl
git add models/model.pkl.dvc
git commit -m "add model - phase 1"

dvc push
git push origin main

5. Deploy the Model with FastAPI

First, delete the .dvc/cache/ & models/model.pkl (simulate production env). Then, pull the changes from the DVC remote storage.

dvc pull

Check that the model.pkl file is now present in models/ folder.

Now, create a server/ folder & place the main.py file in it after downloaidng the server/main.py file from this repo. This RESTful API server has 2 POST endpoints:

  • Inferencing on an individual record
  • Batch inferencing on a CSV file

We commit this to our repo:

git add server/
git commit -m "create basic fastapi server"

Now, we can run our local server on port 8000

cd server
uvicorn main:app --port=8000

Go to http://localhost:8000/docs & play with the endpoints present in the interactive documentation.

Swagger Interactive API Documentation for our Server

For the individual inference, you could use teh following data:

{
  "Age": 61,
  "Sex": "M",
  "ChestPainType": "ASY",
  "RestingBP": 148,
  "Cholesterol": 203,
  "FastingBS": 0,
  "RestingECG": "Normal",
  "MaxHR": 161,
  "ExerciseAngina": "N",
  "Oldpeak": 0,
  "ST_Slope": "Up"
}

6. Simulating the arrival of New Data

Now, we use the full heart.csv file to simulate the arrival of new data with time. We place it within data/ folder & upload it to DVC remote.

dvc add data/heart.csv
git add data/heart.csv.dvc
git commit -m "add data - phase 2"

dvc push
git push origin main

7. More Experimentation with PyCaret

Now, we run the experiment in Phase 2 of the notebooks/experimentation_with_pycaret.ipynb notebook. This involves:

  • Feature engineering while setting up teh experient
  • Fine-tuning of models with tune_model()
  • Creating an ensemble of models with blend_models()

The blended model is saved as models/modl.pkl

We upload it to our DVC remote.

dvc add models/model.pkl
git add models/model.pkl.dvc
git commit -m "add model - phase 2"

dvc push
git push origin main

8. Redeploying the New Model using FastAPI

Now, we again start the server (no code changes required, because the model file has same name) & perform inference.

cd server
uvicorn main:app --port=8000

With this, we demonstrate how DVC can be used in conjunction with PyCaret & FastAPI for iterating & experimenting efficiently with ML models & deploying them with minimal effort.


Additional Resources


Created with ❤️ by Tezan Sahu

Owner
Tezan Sahu
Data & Applied Scientist at Microsoft with a keen interest in NLP, Deep Learning, Blockchain Technologies & Data Analytics.
Tezan Sahu
Opentracing support for Starlette and FastApi

Starlette-OpenTracing OpenTracing support for Starlette and FastApi. Inspired by: Flask-OpenTracing OpenTracing implementations exist for major distri

Rene Dohmen 63 Dec 30, 2022
Prometheus exporter for several chia node statistics

prometheus-chia-exporter Prometheus exporter for several chia node statistics It's assumed that the full node, the harvester and the wallet run on the

30 Sep 19, 2022
API for Submarino store

submarino-api API for the submarino e-commerce documentation read the documentation in: https://submarino-api.herokuapp.com/docs or in https://submari

Miguel 1 Oct 14, 2021
Adds simple SQLAlchemy support to FastAPI

FastAPI-SQLAlchemy FastAPI-SQLAlchemy provides a simple integration between FastAPI and SQLAlchemy in your application. It gives access to useful help

Michael Freeborn 465 Jan 07, 2023
:rocket: CLI tool for FastAPI. Generating new FastAPI projects & boilerplates made easy.

Project generator and manager for FastAPI. Source Code: View it on Github Features 🚀 Creates customizable project boilerplate. Creates customizable a

Yagiz Degirmenci 1k Jan 02, 2023
🔀⏳ Easy throttling with asyncio support

Throttler Zero-dependency Python package for easy throttling with asyncio support. 📝 Table of Contents 🎒 Install 🛠 Usage Examples Throttler and Thr

Ramzan Bekbulatov 80 Dec 07, 2022
MS Graph API authentication example with Fast API

MS Graph API authentication example with Fast API What it is & does This is a simple python service/webapp, using FastAPI with server side rendering,

Andrew Hart 4 Aug 11, 2022
Minecraft biome tile server writing on Python using FastAPI

Blocktile Minecraft biome tile server writing on Python using FastAPI Usage https://blocktile.herokuapp.com/overworld/{seed}/{zoom}/{col}/{row}.png s

Vladimir 2 Aug 31, 2022
flask extension for integration with the awesome pydantic package

flask extension for integration with the awesome pydantic package

249 Jan 06, 2023
Flood Detection with Google Earth Engine

ee-fastapi: Flood Detection System A ee-fastapi is a simple FastAPI web application for performing flood detection using Google Earth Engine in the ba

Cesar Aybar 69 Jan 06, 2023
A web application using [FastAPI + streamlit + Docker] Neural Style Transfer (NST) refers to a class of software algorithms that manipulate digital images

Neural Style Transfer Web App - [FastAPI + streamlit + Docker] NST - application based on the Perceptual Losses for Real-Time Style Transfer and Super

Roman Spiridonov 3 Dec 05, 2022
Slack webhooks API served by FastAPI

Slackers Slack webhooks API served by FastAPI What is Slackers Slackers is a FastAPI implementation to handle Slack interactions and events. It serves

Niels van Huijstee 68 Jan 05, 2023
FastAPI Skeleton App to serve machine learning models production-ready.

FastAPI Model Server Skeleton Serving machine learning models production-ready, fast, easy and secure powered by the great FastAPI by Sebastián Ramíre

268 Jan 01, 2023
京东图片点击验证码识别

京东图片验证码识别 本项目是@yqchilde 大佬的 JDMemberCloseAccount 识别图形验证码(#45)思路验证,若你也有思路可以提交Issue和PR也可以在 @yqchilde 的 TG群 找到我 声明 本脚本只是为了学习研究使用 本脚本除了采集处理验证码图片没有其他任何功能,也

AntonVanke 37 Dec 22, 2022
Feature rich robust FastAPI template.

Flexible and Lightweight general-purpose template for FastAPI. Usage ⚠️ Git, Python and Poetry must be installed and accessible ⚠️ Poetry version must

Pavel Kirilin 588 Jan 04, 2023
Twitter API monitor with fastAPI + MongoDB

Twitter API monitor with fastAPI + MongoDB You need to have a file .env with the following variables: DB_URL="mongodb+srv://mongodb_path" DB_URL2=

Leonardo Ferreira 3 Apr 08, 2022
API using python and Fastapi framework

Welcome 👋 CFCApi is a API DEVELOPMENT PROJECT UNDER CODE FOR COMMUNITY ! Project Walkthrough 🚀 CFCApi run on Python using FASTapi Framework Docs The

Abhishek kushwaha 7 Jan 02, 2023
Prometheus exporter for Starlette and FastAPI

starlette_exporter Prometheus exporter for Starlette and FastAPI. The middleware collects basic metrics: Counter: starlette_requests_total Histogram:

Steve Hillier 225 Jan 05, 2023
fastapi-mqtt is extension for MQTT protocol

fastapi-mqtt MQTT is a lightweight publish/subscribe messaging protocol designed for M2M (machine to machine) telemetry in low bandwidth environments.

Sabuhi 144 Dec 28, 2022
REST API with FastAPI and JSON file.

FastAPI RESTAPI with a JSON py 3.10 First, to install all dependencies, in ./src/: python -m pip install -r requirements.txt Second, into the ./src/

Luis Quiñones Requelme 1 Dec 15, 2021