Official PyTorch implementation of Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations

Overview

Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations

Zhenyu Jiang, Yifeng Zhu, Maxwell Svetlik, Kuan Fang, Yuke Zhu

Project | arxiv

Introduction

GIGA (Grasp detection via Implicit Geometry and Affordance) is a network that jointly detects 6 DOF grasp poses and reconstruct the 3D scene. GIGA takes advantage of deep implicit functions, a continuous and memory-efficient representation, to enable differentiable training of both tasks. GIGA takes as input a Truncated Signed Distance Function (TSDF) representation of the scene, and predicts local implicit functions for grasp affordance and 3D occupancy. By querying the affordance implict functions with grasp center candidates, we can get grasp quality, grasp orientation and gripper width at these centers. GIGA is trained on a synthetic grasping dataset generated with physics simulation.

Installation

  1. Create a conda environment.

  2. Install packages list in requirements.txt. Then install torch-scatter following here, based on pytorch version and cuda version.

  3. Go to the root directory and install the project locally using pip

pip install -e .
  1. Build ConvONets dependents by running python scripts/convonet_setup.py build_ext --inplace.

  2. Download the data, then unzip and place the data folder under the repo's root. Pretrained models of GIGA, GIGA-Aff and VGN are in data/models.

Self-supervised Data Generation

Raw synthetic grasping trials

Pile scenario:

python scripts/generate_data_parallel.py --scene pile --object-set pile/train --num-grasps 4000000 --num-proc 40 --save-scene ./data/pile/data_pile_train_random_raw_4M

Packed scenario:

python scripts/generate_data_parallel.py --scene packed --object-set packed/train --num-grasps 4000000 --num-proc 40 --save-scene ./data/pile/data_packed_train_random_raw_4M

Please run python scripts/generate_data_parallel.py -h to print all options.

Data clean and processing

First clean and balance the data using:

python scripts/clean_balance_data.py /path/to/raw/data

Then construct the dataset (add noise):

python scripts/construct_dataset_parallel.py --num-proc 40 --single-view --add-noise dex /path/to/raw/data /path/to/new/data

Save occupancy data

Sampling occupancy data on the fly can be very slow and block the training, so I sample and store the occupancy data in files beforehand:

python scripts/save_occ_data_parallel.py /path/to/raw/data 100000 2 --num-proc 40

Please run python scripts/save_occ_data_parallel.py -h to print all options.

Training

Train GIGA

Run:

# GIGA
python scripts/train_giga.py --dataset /path/to/new/data --dataset_raw /path/to/raw/data

Simulated grasping

Run:

python scripts/sim_grasp_multiple.py --num-view 1 --object-set (packed/test | pile/test) --scene (packed | pile) --num-rounds 100 --sideview --add-noise dex --force --best --model /path/to/model --type (vgn | giga | giga_aff) --result-path /path/to/result

This commands will run experiment with each seed specified in the arguments.

Run python scripts/sim_grasp_multiple.py -h to print a complete list of optional arguments.

Related Repositories

  1. Our code is largely based on VGN

  2. We use ConvONets as our backbone.

Owner
UT-Austin Robot Perception and Learning Lab
UT-Austin Robot Perception and Learning Lab
Artificial Intelligence search algorithm base on Pacman

Pacman Search Artificial Intelligence search algorithm base on Pacman Source The Pacman Projects by the University of California, Berkeley. Layouts Di

Day Fundora 6 Nov 17, 2022
You can draw the corresponding bounding box into the image and save it according to the result file (txt format) run by the tracker.

You can draw the corresponding bounding box into the image and save it according to the result file (txt format) run by the tracker.

Huiyiqianli 42 Dec 06, 2022
A deep learning model for style-specific music generation.

DeepJ: A model for style-specific music generation https://arxiv.org/abs/1801.00887 Abstract Recent advances in deep neural networks have enabled algo

Henry Mao 704 Nov 23, 2022
A scikit-learn-compatible module for estimating prediction intervals.

MAPIE - Model Agnostic Prediction Interval Estimator MAPIE allows you to easily estimate prediction intervals (or prediction sets) using your favourit

588 Jan 04, 2023
A Pytorch implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU_pytorch A Pytorch Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/ab

Fuhang 36 Dec 24, 2022
Transformer Huffman coding - Complete Huffman coding through transformer

Transformer_Huffman_coding Complete Huffman coding through transformer 2022/2/19

3 May 19, 2022
Deep Inside Convolutional Networks - This is a caffe implementation to visualize the learnt model

Deep Inside Convolutional Networks This is a caffe implementation to visualize the learnt model. Part of a class project at Georgia Tech Problem State

Jigar 61 Apr 15, 2022
Code release for Local Light Field Fusion at SIGGRAPH 2019

Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion

1.1k Dec 27, 2022
ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information

ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information This repository contains code, model, dataset for ChineseBERT at ACL2021. Ch

413 Dec 01, 2022
Source code for Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning

Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning Official implementation of ACC, described in the paper "Adaptively Calibrated C

3 Sep 16, 2022
A Python library for generating new text from existing samples.

ReMarkov is a Python library for generating text from existing samples using Markov chains. You can use it to customize all sorts of writing from birt

8 May 17, 2022
Code for "MetaMorph: Learning Universal Controllers with Transformers", Gupta et al, ICLR 2022

MetaMorph: Learning Universal Controllers with Transformers This is the code for the paper MetaMorph: Learning Universal Controllers with Transformers

Agrim Gupta 50 Jan 03, 2023
[ICCV21] Self-Calibrating Neural Radiance Fields

Self-Calibrating Neural Radiance Fields, ICCV, 2021 Project Page | Paper | Video Author Information Yoonwoo Jeong [Google Scholar] Seokjun Ahn [Google

381 Dec 30, 2022
This is the code of NeurIPS'21 paper "Towards Enabling Meta-Learning from Target Models".

ST This is the code of NeurIPS 2021 paper "Towards Enabling Meta-Learning from Target Models". If you use any content of this repo for your work, plea

Su Lu 7 Dec 06, 2022
RaceBERT -- A transformer based model to predict race and ethnicty from names

RaceBERT -- A transformer based model to predict race and ethnicty from names Installation pip install racebert Using a virtual environment is highly

Prasanna Parasurama 3 Nov 02, 2022
Dilated Convolution with Learnable Spacings PyTorch

Dilated-Convolution-with-Learnable-Spacings-PyTorch Ismail Khalfaoui Hassani Dilated Convolution with Learnable Spacings (abbreviated to DCLS) is a no

15 Dec 09, 2022
Easy to use Python camera interface for NVIDIA Jetson

JetCam JetCam is an easy to use Python camera interface for NVIDIA Jetson. Works with various USB and CSI cameras using Jetson's Accelerated GStreamer

NVIDIA AI IOT 358 Jan 02, 2023
Code for "Adversarial Attack Generation Empowered by Min-Max Optimization", NeurIPS 2021

Min-Max Adversarial Attacks [Paper] [arXiv] [Video] [Slide] Adversarial Attack Generation Empowered by Min-Max Optimization Jingkang Wang, Tianyun Zha

Jingkang Wang 12 Nov 23, 2022
Implicit Graph Neural Networks

Implicit Graph Neural Networks This repository is the official PyTorch implementation of "Implicit Graph Neural Networks". Fangda Gu*, Heng Chang*, We

Heng Chang 48 Nov 29, 2022
Malware Analysis Neural Network project.

MalanaNeuralNetwork Description Malware Analysis Neural Network project. Table of Contents Getting Started Requirements Installation Clone Set-Up VENV

2 Nov 13, 2021