🌾 PASTIS 🌾 Panoptic Agricultural Satellite TIme Series

Overview

🌾 PASTIS 🌾 Panoptic Agricultural Satellite TIme Series (optical and radar)

The PASTIS Dataset

  • Dataset presentation

PASTIS is a benchmark dataset for panoptic and semantic segmentation of agricultural parcels from satellite time series. It contains 2,433 patches within the French metropolitan territory with panoptic annotations (instance index + semantic labelfor each pixel). Each patch is a Sentinel-2 multispectral image time series of variable lentgh.

We propose an official 5 fold split provided in the dataset's metadata, and evaluated several of the top-performing image time series networks. You are welcome to use our numbers and to submit your own entries to the leaderboard!

  • Dataset in numbers
▶️ 2,433 time series ▶️ 124,422 individual parcels ▶️ 18 crop types
▶️ 128x128 pixels / images ▶️ 38-61 acquisitions / series ▶️ 10m / pixel
▶️ 10 spectral bands ▶️ covers ~4,000 km² ▶️ over 2B pixels
  • 🔥 NEW: Radar extension (PASTIS-R)

We also propose an extended version of PASTIS which contains all radar observations of Sentinel-1 for all 2433 patches in addition to the Sentinel-2 images. For each patch, approximately 70 observations of Sentinel-1 in ascending orbit, and 70 observations in descending orbit are added to the dataset. The PASTIS-R extension can thus be used to evaluate optical-radar fusion methods for parcel-based classification, semantic segmentation, and panoptic segmentation.
For more details on PASTIS-R, refer to our recent paper on multi-modal fusion with attention-based models (link coming soon).

Usage

  • Download

The dataset can be downloaded from zenodo in different formats:

  1. PASTIS (29 GB zipped) : The original PASTIS dataset for semantic and panoptic segmentation on Sentinel-2 time series (format used for the ICCV 2021 paper). DOI
  2. PASTIS-R (54 GB zipped) : The extended version with Sentinel-1 observations. DOI
  3. PASTIS-R (pixel-set format) (27 GB zipped) : The PASTIS-R dataset prepared in pixel-set format for parcel-based classification only. See this repo and paper for more details on this format. DOI
  • Data loading

This repository also contains a PyTorch dataset class in code/dataloader.py that can be readily used to load data for training models on PASTIS and PASTIS-R. For the pixel-set dataset, use the dataloader in code/dataloader_pixelset.py. The time series contained in PASTIS have variable lengths. The code/collate.py contains a pad_collate function that you can use in the pytorch dataloader to temporally pad shorter sequences. The demo.ipynb notebook shows how to use these classes and methods to load data from PASTIS.

  • Metrics

A PyTorch implementation is also given in code/panoptic_metrics.py to compute the panoptic metrics. In order to use these metrics, the model's output should contain an instance prediction and a semantic prediction. The first one allocates an instance id to each pixel of the image, and the latter a semantic label.

Leaderboard

Please open an issue to submit new entries. Do mention if the work has been published and wether the code accessible for reproducibility. We require that at least a preprint is available to present the method used.

Semantic Segmentation

Optical only (PASTIS)

Model name #Params OA mIoU Published
U-TAE 1.1M 83.2% 63.1% ✔️ link
Unet-3d* 1.6M 81.3% 58.4% ✔️ link
Unet-ConvLSTM* 1.5M 82.1% 57.8% ✔️ link
FPN-ConvLSTM* 1.3M 81.6% 57.1% ✔️ link
Models that we re-implemented ourselves are denoted with a star (*).

Optical+Radar fusion (PASTIS-R)

Model name #Params OA mIoU Published
Late Fusion (U-TAE) + Aux + TempDrop 1.7M 84.2% 66.3% ✔️ link
Early Fusion (U-TAE) + TempDrop 1.6M 83.8% 65.9% ✔️ link

Panoptic Segmentation

Optical only (PASTIS)

Model name #Params SQ RQ PQ Published
U-TAE + PaPs 1.3M 81.3 49.2 40.4 ✔️ link

Optical+Radar fusion (PASTIS-R)

Model name #Params SQ RQ PQ Published
Early Fusion (U-TAE + PaPs) + Aux + TempDrop 1.8M 82.2 50.6 42.0 ✔️ link
Late Fusion (U-TAE + PaPs) + TempDrop 2.4M 81.6 50.5 41.6 ✔️ link

Documentation

The agricultural parcels are grouped into 18 different crop classes as shown in the table below. The backgroud class corresponds to non-agricultural land, and the void label for parcels that are mostly outside their patch. drawing

Additional information about the dataset can be found in the documentation/pastis-documentation.pdf document.

References

If you use PASTIS please cite the related paper:

@article{garnot2021panoptic,
  title={Panoptic Segmentation of Satellite Image Time Series
with Convolutional Temporal Attention Networks},
  author={Sainte Fare Garnot, Vivien  and Landrieu, Loic },
  journal={ICCV},
  year={2021}
}

For the PASTIS-R optical-radar fusion dataset, please also cite this paper:

@article{garnot2021mmfusion,
  title={Multi-Modal Temporal Attention Models for Crop Mapping from Satellite Time Series},
  author={Sainte Fare Garnot, Vivien  and Landrieu, Loic and Chehata, Nesrine },
  journal={arxiv},
  year={2021}
}

Credits

  • The satellite imagery used in PASTIS was retrieved from THEIA: "Value-added data processed by the CNES for the Theia www.theia.land.fr data cluster using Copernicus data. The treatments use algorithms developed by Theia’s Scientific Expertise Centres. "

  • The annotations used in PASTIS stem from the French land parcel identification system produced by IGN, the French mapping agency.

  • This work was partly supported by ASP, the French Payment Agency.

  • We also thank Zenodo for hosting the datasets.

Resco: A simple python package that report the effect of deep residual learning

resco Description resco is a simple python package that report the effect of dee

Pierre-Arthur Claudé 1 Jun 28, 2022
Self-Supervised CNN-GCN Autoencoder

GCNDepth Self-Supervised CNN-GCN Autoencoder GCNDepth: Self-supervised monocular depth estimation based on graph convolutional network To be published

53 Dec 14, 2022
Nvdiffrast - Modular Primitives for High-Performance Differentiable Rendering

Nvdiffrast – Modular Primitives for High-Performance Differentiable Rendering Modular Primitives for High-Performance Differentiable Rendering Samuli

NVIDIA Research Projects 675 Jan 06, 2023
Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX.

snc4onnx Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX. https://github.com/PINTO0309/simple-onnx-processing-tools 1.

Katsuya Hyodo 8 Oct 13, 2022
Official repository for "Orthogonal Projection Loss" (ICCV'21)

Orthogonal Projection Loss (ICCV'21) Kanchana Ranasinghe, Muzammal Naseer, Munawar Hayat, Salman Khan, & Fahad Shahbaz Khan Paper Link | Project Page

Kanchana Ranasinghe 83 Dec 26, 2022
Deep Learning Pipelines for Apache Spark

Deep Learning Pipelines for Apache Spark The repo only contains HorovodRunner code for local CI and API docs. To use HorovodRunner for distributed tra

Databricks 2k Jan 08, 2023
Image based Human Fall Detection

Here I integrated the YOLOv5 object detection algorithm with my own created dataset which consists of human activity images to achieve low cost, high accuracy, and real-time computing requirements

UTTEJ KUMAR 12 Dec 11, 2022
Simple keras FCN Encoder/Decoder model for MS-COCO (food subset) segmentation

FCN_MSCOCO_Food_Segmentation Simple keras FCN Encoder/Decoder model for MS-COCO (food subset) segmentation Input data: [http://mscoco.org/dataset/#ove

Alexander Kalinovsky 11 Jan 08, 2019
patchmatch和patchmatchstereo算法的python实现

patchmatch patchmatch以及patchmatchstereo算法的python版实现 patchmatch参考 github patchmatchstereo参考李迎松博士的c++版代码 由于patchmatchstereo没有做任何优化,并且是python的代码,主要是方便解析算

Sanders Bao 11 Dec 02, 2022
A Real-Time-Strategy game for Deep Learning research

Description DeepRTS is a high-performance Real-TIme strategy game for Reinforcement Learning research. It is written in C++ for performance, but provi

Centre for Artificial Intelligence Research (CAIR) 156 Dec 19, 2022
Benchmarks for semi-supervised domain generalization.

Semi-Supervised Domain Generalization This code is the official implementation of the following paper: Semi-Supervised Domain Generalization with Stoc

Kaiyang 49 Dec 10, 2022
Dataset and Code for ICCV 2021 paper "Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme"

Dataset and Code for RealVSR Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme Xi Yang, Wangmeng Xiang,

Xi Yang 92 Jan 04, 2023
A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

Davis E. King 11.6k Jan 01, 2023
PyTorch Autoencoders - Implementing a Variational Autoencoder (VAE) Series in Pytorch.

PyTorch Autoencoders Implementing a Variational Autoencoder (VAE) Series in Pytorch. Inspired by this repository Model List check model paper conferen

Subin An 8 Nov 21, 2022
PyTorch implementation of MulMON

MulMON This repository contains a PyTorch implementation of the paper: Learning Object-Centric Representations of Multi-object Scenes from Multiple Vi

NanboLi 16 Nov 03, 2022
Repository for training material for the 2022 SDSC HPC/CI User Training Course

hpc-training-2022 Repository for training material for the 2022 SDSC HPC/CI Training Series HPC/CI Training Series home https://www.sdsc.edu/event_ite

sdsc-hpc-training-org 21 Jul 27, 2022
Modelisation on galaxy evolution using PEGASE-HR

model_galaxy Modelisation on galaxy evolution using PEGASE-HR This is a labwork done in internship at IAP directed by Damien Le Borgne (https://github

Adrien Anthore 1 Jan 14, 2022
This is the source code for the experiments related to the paper Unsupervised Audio Source Separation Using Differentiable Parametric Source Models

Unsupervised Audio Source Separation Using Differentiable Parametric Source Models This is the source code for the experiments related to the paper Un

30 Oct 19, 2022
Learning Representations that Support Robust Transfer of Predictors

Transfer Risk Minimization (TRM) Code for Learning Representations that Support Robust Transfer of Predictors Prepare the Datasets Preprocess the Scen

Yilun Xu 15 Dec 07, 2022
A general and strong 3D object detection codebase that supports more methods, datasets and tools (debugging, recording and analysis).

ALLINONE-Det ALLINONE-Det is a general and strong 3D object detection codebase built on OpenPCDet, which supports more methods, datasets and tools (de

Michael.CV 5 Nov 03, 2022