Toward Realistic Single-View 3D Object Reconstruction with Unsupervised Learning from Multiple Images (ICCV 2021)

Overview
Table of Content
  1. Introduction
  2. Getting Started
  3. Experiments

Toward Realistic Single-View 3D Object Reconstruction with Unsupervised Learning from Multiple Images

Recovering the 3D structure of an object from a single image is a challenging task due to its ill-posed nature. One approach is to utilize the plentiful photos of the same object category to learn a strong 3D shape prior for the object. We propose a general framework without symmetry constraint, called LeMul, that effectively Learns from Multi-image datasets for more flexible and reliable unsupervised training of 3D reconstruction networks. It employs loose shape and texture consistency losses based on component swapping across views.

Details of the model architecture and experimental results can be found in our following paper.

@inproceedings{ho2021lemul,
      title={Toward Realistic Single-View 3D Object Reconstruction with Unsupervised Learning from Multiple Images},
      author={Long-Nhat Ho and Anh Tran and Quynh Phung and Minh Hoai},
      booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
      year={2021}
}

Please CITE our paper whenever our model implementation is used to help produce published results or incorporated into other software.

Getting Started

Datasets

  1. CelebA face dataset. Please download the original images (img_celeba.7z) from their website and run celeba_crop.py in data/ to crop the images.
  2. Synthetic face dataset generated using Basel Face Model. This can be downloaded using the script download_synface.sh provided in data/.
  3. Cat face dataset composed of Cat Head Dataset and Oxford-IIIT Pet Dataset (license). This can be downloaded using the script download_cat.sh provided in data/.
  4. CASIA WebFace dataset. You can download the original dataset from backup links such as the Google Drive link on this page. Decompress, and run casia_data_split.py in data/ to re-organize the images.

Please remember to cite the corresponding papers if you use these datasets.

Installation:

# clone the repo
git clone https://github.com/VinAIResearch/LeMul.git
cd LeMul

# install dependencies
conda env create -f environment.yml

Experiments

Training and Testing

Check the configuration files in experiments/ and run experiments, eg:

# Training
python run.py --config experiments/train_multi_CASIA.yml --gpu 0 --num_workers 4

# Testing
python run.py --config experiments/test_multi_CASIA.yml --gpu 0 --num_workers 4

Texture fine-tuning

With collection-style datasets such as CASIA, you can fine-tune the texture estimation network after training. Check the configuration file experiments/finetune_CASIA.yml as an example. You can run it with the command:

python run.py --config experiments/finetune_CASIA.yml --gpu 0 --num_workers 4

Pretrained Models

Pretrained models can be found here: Google Drive Please download and place pretrained models in ./pretrained folder.

Demo

After downloading pretrained models and preparing input image folder, you can run demo, eg:

python demo/demo.py --input demo/human_face_cropped --result demo/human_face_results --checkpoint pretrained/casia_checkpoint028.pth

Options:

  • --config path-to-training-config-file.yml: input the config file used in training (recommended)
  • --detect_human_face: enable automatic human face detection and cropping using MTCNN. You need to install facenet-pytorch before using this option. This only works on human face images
  • --gpu: enable GPU
  • --render_video: render 3D animations using neural_renderer (GPU is required)

To replicate the results reported in the paper with the model pretrained on the CASIA dataset, use the --detect_human_face option with images in folder demo/images/human_face and skip that flag with images in demo/images/human_face_cropped.

Owner
VinAI Research
VinAI Research
Python scripts for performing stereo depth estimation using the HITNET Tensorflow model.

HITNET-Stereo-Depth-estimation Python scripts for performing stereo depth estimation using the HITNET Tensorflow model from Google Research. Stereo de

Ibai Gorordo 76 Jan 02, 2023
A compendium of useful, interesting, inspirational usage of pandas functions, each example will be an ipynb file

Pandas_by_examples A compendium of useful/interesting/inspirational usage of pandas functions, each example will be an ipynb file What is this reposit

Guangyuan(Frank) Li 32 Nov 20, 2022
Running AlphaFold2 (from ColabFold) in Azure Machine Learning

Running AlphaFold2 (from ColabFold) in Azure Machine Learning Colby T. Ford, Ph.D. Companion repository for Medium Post: How to predict many protein s

Colby T. Ford 3 Feb 18, 2022
Few-Shot Graph Learning for Molecular Property Prediction

Few-shot Graph Learning for Molecular Property Prediction Introduction This is the source code and dataset for the following paper: Few-shot Graph Lea

Zhichun Guo 94 Dec 12, 2022
A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model.

Semantic Meshes A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model. Paper If you find this framework usefu

Florian 40 Dec 09, 2022
WormMovementSimulation - 3D Simulation of Worm Body Movement with Neurons attached to its body

Generate 3D Locomotion Data This module is intended to create 2D video trajector

1 Aug 09, 2022
Using a Seq2Seq RNN architecture via TensorFlow to predict future Bitcoin prices

Recurrent Bitcoin Network A Data Science Thesis Project About This repository contains the source code for implementing Bitcoin price prediciton using

Frizu 6 Sep 08, 2022
Towards Implicit Text-Guided 3D Shape Generation (CVPR2022)

Towards Implicit Text-Guided 3D Shape Generation Towards Implicit Text-Guided 3D Shape Generation (CVPR2022) Code for the paper [Towards Implicit Text

55 Dec 16, 2022
A PyTorch implementation of "Graph Classification Using Structural Attention" (KDD 2018).

GAM ⠀⠀ A PyTorch implementation of Graph Classification Using Structural Attention (KDD 2018). Abstract Graph classification is a problem with practic

Benedek Rozemberczki 259 Dec 05, 2022
This repository introduces a short project about Transfer Learning for Classification of MRI Images.

Transfer Learning for MRI Images Classification This repository introduces a short project made during my stay at Neuromatch Summer School 2021. This

Oscar Guarnizo 3 Nov 15, 2022
Six - a Python 2 and 3 compatibility library

Six is a Python 2 and 3 compatibility library. It provides utility functions for smoothing over the differences between the Python versions with the g

Benjamin Peterson 919 Dec 28, 2022
Pyramid Grafting Network for One-Stage High Resolution Saliency Detection. CVPR 2022

PGNet Pyramid Grafting Network for One-Stage High Resolution Saliency Detection. CVPR 2022, CVPR 2022 (arXiv 2204.05041) Abstract Recent salient objec

CVTEAM 109 Dec 05, 2022
An official repository for Paper "Uformer: A General U-Shaped Transformer for Image Restoration".

Uformer: A General U-Shaped Transformer for Image Restoration Zhendong Wang, Xiaodong Cun, Jianmin Bao and Jianzhuang Liu Paper: https://arxiv.org/abs

Zhendong Wang 497 Dec 22, 2022
Statsmodels: statistical modeling and econometrics in Python

About statsmodels statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics an

statsmodels 8.1k Jan 02, 2023
A python module for scientific analysis of 3D objects based on VTK and Numpy

A lightweight and powerful python module for scientific analysis and visualization of 3d objects.

Marco Musy 1.5k Jan 06, 2023
Geometry-Free View Synthesis: Transformers and no 3D Priors

Geometry-Free View Synthesis: Transformers and no 3D Priors Geometry-Free View Synthesis: Transformers and no 3D Priors Robin Rombach*, Patrick Esser*

CompVis Heidelberg 293 Dec 22, 2022
Generate high quality pictures. GAN. Generative Adversarial Networks

ESRGAN generate high quality pictures. GAN. Generative Adversarial Networks """ Super-resolution of CelebA using Generative Adversarial Networks. The

Lieon 1 Dec 14, 2021
Inteligência artificial criada para realizar interação social com idosos.

IA SONIA 4.0 A SONIA foi inspirada no assistente mais famoso do mundo e muito bem conhecido JARVIS. Todo mundo algum dia ja sonhou em ter o seu própri

Vinícius Azevedo 2 Oct 21, 2021
Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection

DDMP-3D Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection, a paper on CVPR2021. Instroduction T

Li Wang 32 Nov 09, 2022
Meta-meta-learning with evolution and plasticity

Evolve plastic networks to be able to automatically acquire novel cognitive (meta-learning) tasks

5 Jun 28, 2022