Automate the case review on legal case documents and find the most critical cases using network analysis

Overview

Automation on Legal Court Cases Review

This project is to automate the case review on legal case documents and find the most critical cases using network analysis.

Short write-up

Affiliation: Institute for Social and Economic Research and Policy, Columbia University

Project Information:

Keywords: Automation, PDF parse, String Extraction, Network Analysis

Software:

  • Python : pdfminer, LexNLP, nltk sklearn
  • R: igraph

Scope:

  1. Parse court documents, extract citations from raw text.
  2. Build citation network, identify important cases in the network.
  3. Extract judge's opinion text and meta information including opinion author, court, decision.
  4. Model training to predict court decision based on opinion text.

Polit Study on 159 Legal Court Documents (in pilot_159 folder)

1. Process PDF documents using Python

Ipython Notebook Description
1.Extraction by LexNLP.ipynb Extract meta inforation use LexNLP package.
2.Layer Analysis on Sigle File. ipynb Use pdfminer to extract the raw text and the paragraph segamentation in the PDF document.
3.Patent Position by Layer.ipynb Identify the position of patent number in extracted layers from PDF.
4.Opinion and Author by Layer.ipynb Extract opinion text, author, decisions from the layers list.
5.Wrap up to Meta Data.ipynb Store extracted meta data to .json or .csv
6.Visualize citation frequency.ipynb Bar plot of the citation frequencies

2. Data: Parse PDF documents via Python

These datasets are NOT included in this public repository for intellectual property and privacy concern

File
pdf2text159.json A dictionary of 3 list: file_name, raw_text, layers.
cite_edge159.csv Edge list of citation network
cite_node159.csv Meta information of each case: case_number, court, dates
reference_extract.csv cited cases in a list for every case, untidy format for analysis
citation159.csv file citation pair, tidy format for calculation
regulation159.csv file regulation pair, tidy format for calculation

3. Analyze and Visualize using R

File
Calculate Citation Frequency.Rmd Analyze reference_extract.csv
Citation Network.Rmd Analyze cite_edge159

4. Visulization Chart Sample

Citation Frequencycase_freq

Citation Networkcitation_net

Network Visulization and Predictive Modeling on 854 Legal Court Cases (in Extraction_Modelling folder)

1. Extract opinion and meta information from raw text data

.ipynb notebook Description
Full Dataset Merge.ipynb Merge the 854 cases dataset
Edge and Node List.ipynb Create edge and node list
Full Extractions.ipynb Extract author, judge panel, opinion text
Clean Opinion Text.ipynb Remove references and special characters in opinion text

2. Datasets

These datasets are NOT included in this public repository for intellectual property and privacy concern

Dataset Description
amy_cases.json large dictionary {file name: raw text} for 854 cases, from Lilian's PDF parsing
full_name_text.json convert amy_cases.json key value pair to two list: file_name, raw_text
cite_edge.csv edge list of citation
cite_node.csv node list contains case_code, case_name, court_from, court_type
extraction854.csv full extractions include case_code, case_name, court_from, court_type, result, author, judge_panel
decision_text.json json file include author, decision(result of the case), opinion (opinion text), cleaned_text (cleaned opinion text)
cleaned_text.csv csv file contains allt the cleaned text
predict_data.csv cleaned dataset for NLP modeling predict court decision

3. Visulization using R

R markdown file
Full Network Graph.Rmd draw the full citation network
Citation Betwwen Nodes.Rmd draw citation between all the available cases
Clean Data For Predictive Modelling.rmd clean text data for predictive modeling

Interactive Graph

Play with Interactive Graph

Full Citation Network (all cases and cited cases)

Citation Between Available Cases

4. Predictive Modeling using Python

ipynb notebook
NLP Predictive Modeling.ipynb Try different preprocessing, and build a logistic regression to predict court decision.

Visulization of the Bi-gram (words) with the strongest coefficient

Bigram

Owner
Yi Yin
Tech & Business Alignment @ Wolfram Research, Social Sciences Research @ Columbia University
Yi Yin
Sentiment Analysis application created with Python and Dash, hosted at socialsentiment.net

Social Sentiment Dash Application Live-streaming sentiment analysis application created with Python and Dash, hosted at SocialSentiment.net. Dash Tuto

Harrison 456 Dec 25, 2022
Arras.io Highest Scores Over Time Bar Chart Race

Arras.io Highest Scores Over Time Bar Chart Race This repo contains a python script (make_racing_bar_chart.py) that can generate a csv file which can

Road 2 Jan 16, 2022
Draw interactive NetworkX graphs with Altair

nx_altair Draw NetworkX graphs with Altair nx_altair offers a similar draw API to NetworkX but returns Altair Charts instead. If you'd like to contrib

Zachary Sailer 206 Dec 12, 2022
Exploratory analysis and data visualization of aircraft accidents and incidents in Brazil.

Exploring aircraft accidents in Brazil Occurrencies with aircraft in Brazil are investigated by the Center for Investigation and Prevention of Aircraf

Augusto Herrmann 5 Dec 14, 2021
The official colors of the FAU as matplotlib/seaborn colormaps

FAU - Colors The official colors of Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) as matplotlib / seaborn colormaps. We support the old colo

Machine Learning and Data Analytics Lab FAU 9 Sep 05, 2022
100 data puzzles for pandas, ranging from short and simple to super tricky (60% complete)

100 pandas puzzles Puzzles notebook Solutions notebook Inspired by 100 Numpy exerises, here are 100* short puzzles for testing your knowledge of panda

Alex Riley 1.9k Jan 08, 2023
Fast data visualization and GUI tools for scientific / engineering applications

PyQtGraph A pure-Python graphics library for PyQt5/PyQt6/PySide2/PySide6 Copyright 2020 Luke Campagnola, University of North Carolina at Chapel Hill h

pyqtgraph 3.1k Jan 08, 2023
Implement the Perspective open source code in preparation for data visualization

Task Overview | Installation Instructions | Link to Module 2 Introduction Experience Technology at JP Morgan Chase Try out what real work is like in t

Abdulazeez Jimoh 1 Jan 23, 2022
Create HTML profiling reports from pandas DataFrame objects

Pandas Profiling Documentation | Slack | Stack Overflow Generates profile reports from a pandas DataFrame. The pandas df.describe() function is great

10k Jan 01, 2023
Data Visualizer Web-Application

Viz-It Data Visualizer Web-Application If I ask you where most of the data wrangler looses their time ? It is Data Overview and EDA. Presenting "Viz-I

Sagnik Roy 17 Nov 20, 2022
An open-source plotting library for statistical data.

Lets-Plot Lets-Plot is an open-source plotting library for statistical data. It is implemented using the Kotlin programming language. The design of Le

JetBrains 820 Jan 06, 2023
DrawBot lets you draw images taken from the internet on Skribbl.io, Gartic Phone and Paint

DrawBot You don't speak french? No worries, english translation is over here. C'est quoi ? DrawBot est un logiciel codé par V2F qui va prendre possess

V2F 205 Jan 01, 2023
https://there.oughta.be/a/macro-keyboard

inkkeys Details and instructions can be found on https://there.oughta.be/a/macro-keyboard In contrast to most of my other projects, I decided to put t

Sebastian Staacks 209 Dec 21, 2022
Generate visualizations of GitHub user and repository statistics using GitHub Actions.

GitHub Stats Visualization Generate visualizations of GitHub user and repository statistics using GitHub Actions. This project is currently a work-in-

JoelImgu 3 Dec 14, 2022
Geocoding library for Python.

geopy geopy is a Python client for several popular geocoding web services. geopy makes it easy for Python developers to locate the coordinates of addr

geopy 3.8k Jan 02, 2023
A program that analyzes data from inertia measurement units installed in aircraft and generates g-exceedance curves.

A program that analyzes data from inertia measurement units installed in aircraft and generates g-exceedance curves.

Pooya 1 Dec 02, 2021
clock_plot provides a simple way to visualize timeseries data, mapping 24 hours onto the 360 degrees of a polar plot

clock_plot clock_plot provides a simple way to visualize timeseries data mapping 24 hours onto the 360 degrees of a polar plot. For usage, please see

12 Aug 24, 2022
Displaying plot of death rates from past years in Poland. Data source from these years is in readme

Average-Death-Rate Displaying plot of death rates from past years in Poland The goal collect the data from a CSV file count the ADR (Average Death Rat

Oliwier Szymański 0 Sep 12, 2021
A little logger for machine learning research

Blinker Blinker provides a fast dispatching system that allows any number of interested parties to subscribe to events, or "signals". Signal receivers

Reinforcement Learning Working Group 27 Dec 03, 2022
Data Visualization Guide for Presentations, Reports, and Dashboards

This is a highly practical and example-based guide on visually representing data in reports and dashboards.

Anton Zhiyanov 395 Dec 29, 2022