Implement the Perspective open source code in preparation for data visualization

Overview

Task Overview | Installation Instructions | Link to Module 2

Introduction

Experience Technology at JP Morgan Chase

Try out what real work is like in the technology team JP Morgan Chase. Fast track to the tech team with your work.

Module 2 Task Overview

Use JP Morgan Chase's frameworks and tools Implement JP Morgan Chase’s Perspective open source code in preparation for data visualization

Aim:Take an incomplete setup of Perspective, i.e. a graph that updates manually, and make it work with the code from Task 1 such that it now updates automatically by continuously requesting from the server application

  1. Please clone this repository to start the task
  2. [goal-a] In the client application, observe that when new data feed is retrieved whenever you click the 'Start Streaming Data' button, the previous entry is re-entered into the table. Update the application so that the table does not have duplicated entries
  3. [goal-b] We also want the react app to keep continuosly requesting data from the python server. Currently, the data feed is called only once every time the 'Start Streaming' button is clicked. Change the application to continuously query the datafeed every 100ms when the 'Start Streaming' is clicked.
  4. [goal-c] Currently, the Perspective element only shows the data in table view after the data loads. Add Perspective configurations so that when the data is loaded, it shows the historical data of ask_price ABC in the Y line chart.
  5. Upload a git patch file as the submission to this task

Set up / Installation

In order to get the server and client application code working on your machine, follow the setup here

Note:This is the version of the JPM 2 exercise that uses Python 3. The Python 2.7 version is in this other repo

How to Run

Similar to Task 1, start the data feed server by running the python server.

Make sure your terminal / command line is in the repository first before doing any of this.

If you are using Windows, make sure to run your terminal/command prompt as administrator.

python datafeed/server3.py

If you encounter an issue with datautil.parser, run this command:

pip install python-dateutil

If you don't have pip, you can install it from: https://pip.pypa.io/en/stable/installing/

Run npm install && npm start to start the React application.

It's okay to have audit warnings when installing/running the app.

If you don't have npm (although you should if you followed the set up / installation part), you can install the recommended version alongside NodeJS from: https://nodejs.org/en/

The recommended version are node v11.0.0 and npm v6.4.1

Open http://localhost:3000 to view the app in the browser. The page will reload if you make edits.

Known Issues

Some users seem to be having trouble with the unzipped version of the node_modules back up for windows. This is the alternative unzipped version: https://drive.google.com/drive/folders/1wzIlt-OeiK6nYEHidsOGlpJ_KmeoPVXz

Note: You may need to (hard) refresh the link to the public gdrive to see all of the files/folders e.g. @jpmorganchase/perspective as it takes gdrive a bit to load them for you.

How to fix the code to meet the objectives

To make the changes necessary to complete the objectives of this task, follow this guide.

How to submit your work

A patch file is what is required from you to submit. To create a patch file, follow this guide. Then submit the patch file in the JPM Module 2 Page.

Owner
Abdulazeez Jimoh
Junior Software Engineer
Abdulazeez Jimoh
MPL Plotter is a Matplotlib based Python plotting library built with the goal of delivering publication-quality plots concisely.

MPL Plotter is a Matplotlib based Python plotting library built with the goal of delivering publication-quality plots concisely.

Antonio López Rivera 162 Nov 11, 2022
Matplotlib JOTA style for making figures

Matplotlib JOTA style for making figures This repo has Matplotlib JOTA style to format plots and figures for publications and presentation.

JOTA JORNALISMO 2 May 05, 2022
kyle's vision of how datadog's python client should look

kyle's datadog python vision/proposal not for production use See examples/comprehensive.py for a mostly working example of the proposed API. 📈 🐶 ❤️

Kyle Verhoog 2 Nov 21, 2021
Quickly and accurately render even the largest data.

Turn even the largest data into images, accurately Build Status Coverage Latest dev release Latest release Docs Support What is it? Datashader is a da

HoloViz 2.9k Dec 28, 2022
Boltzmann visualization - Visualize the Boltzmann distribution for simple quantum models of molecular motion

Boltzmann visualization - Visualize the Boltzmann distribution for simple quantum models of molecular motion

1 Jan 22, 2022
Matplotlib tutorial for beginner

matplotlib is probably the single most used Python package for 2D-graphics. It provides both a very quick way to visualize data from Python and publication-quality figures in many formats. We are goi

Nicolas P. Rougier 2.6k Dec 28, 2022
Simulation du problème de Monty Hall avec Python et matplotlib

Le problème de Monty Hall C'est un jeu télévisé où il y a trois portes sur le plateau de jeu. Seule une de ces portes cache un trésor. Il n'y a rien d

ETCHART YANG 1 Jan 06, 2022
A collection of 100 Deep Learning images and visualizations

A collection of Deep Learning images and visualizations. The project has been developed by the AI Summer team and currently contains almost 100 images.

AI Summer 65 Sep 12, 2022
Fractals plotted on MatPlotLib in Python.

About The Project Learning more about fractals through the process of visualization. Built With Matplotlib Numpy License This project is licensed unde

Akeel Ather Medina 2 Aug 30, 2022
Generate knowledge graphs with interesting geometries, like lattices

Geometric Graphs Generate knowledge graphs with interesting geometries, like lattices. Works on Python 3.9+ because it uses cool new features. Get out

Charles Tapley Hoyt 5 Jan 03, 2022
Peloton Stats to Google Sheets with Data Visualization through Seaborn and Plotly

Peloton Stats to Google Sheets with Data Visualization through Seaborn and Plotly Problem: 2 peloton users were looking for a way to track their metri

9 Jul 22, 2022
Smarthome Dashboard with Grafana & InfluxDB

Smarthome Dashboard with Grafana & InfluxDB This is a complete overhaul of my Raspberry Dashboard done with Flask. I switched from sqlite to InfluxDB

6 Oct 20, 2022
NorthPitch is a python soccer plotting library that sits on top of Matplotlib

NorthPitch is a python soccer plotting library that sits on top of Matplotlib.

Devin Pleuler 30 Feb 22, 2022
Analytical Web Apps for Python, R, Julia, and Jupyter. No JavaScript Required.

Dash Dash is the most downloaded, trusted Python framework for building ML & data science web apps. Built on top of Plotly.js, React and Flask, Dash t

Plotly 17.9k Dec 31, 2022
The repository is my code for various types of data visualization cases based on the Matplotlib library.

ScienceGallery The repository is my code for various types of data visualization cases based on the Matplotlib library. It summarizes the code and cas

Warrick Xu 2 Apr 20, 2022
A python wrapper for creating and viewing effects for Matt Parker's christmas tree.

Christmas Tree Visualizer A python wrapper for creating and viewing effects for Matt Parker's christmas tree. Displays py or csv effect files and allo

4 Nov 22, 2022
Data-FX is an addon for Blender (2.9) that allows for the visualization of data with different charts

Data-FX Data-FX is an addon for Blender (2.9) that allows for the visualization of data with different charts Currently, there are only 2 chart option

Landon Ferguson 20 Nov 21, 2022
A concise grammar of interactive graphics, built on Vega.

Vega-Lite Vega-Lite provides a higher-level grammar for visual analysis that generates complete Vega specifications. You can find more details, docume

Vega 4k Jan 08, 2023
A GUI for Pandas DataFrames

PandasGUI A GUI for analyzing Pandas DataFrames. Demo Installation Install latest release from PyPi: pip install pandasgui Install directly from Githu

Adam 2.8k Jan 03, 2023
High-level geospatial data visualization library for Python.

geoplot: geospatial data visualization geoplot is a high-level Python geospatial plotting library. It's an extension to cartopy and matplotlib which m

Aleksey Bilogur 1k Jan 01, 2023