A Semantic Segmentation Network for Urban-Scale Building Footprint Extraction Using RGB Satellite Imagery

Overview

A Semantic Segmentation Network for Urban-Scale Building Footprint Extraction Using RGB Satellite Imagery

This repository is the official implementation of A Semantic Segmentation Network for Urban-Scale Building Footprint Extraction Using RGB Satellite Imagery by Aatif Jiwani, Shubhrakanti Ganguly, Chao Ding, Nan Zhou, and David Chan.

model visualization

Requirements

  1. To install GDAL/georaster, please follow this doc for instructions.
  2. Install other dependencies from requirements.txt
pip install -r requirements.txt

Datasets

Downloading the Datasets

  1. To download the AICrowd dataset, please go here. You will have to either create an account or sign in to access the training and validation set. Please store the training/validation set inside <root>/AICrowd/<train | val> for ease of conversion.
  2. To download the Urban3D dataset, please run:
aws s3 cp --recursive s3://spacenet-dataset/Hosted-Datasets/Urban_3D_Challenge/01-Provisional_Train/ <root>/Urban3D/train
aws s3 cp --recursive s3://spacenet-dataset/Hosted-Datasets/Urban_3D_Challenge/02-Provisional_Test/ <root>/Urban3D/test
  1. To download the SpaceNet Vegas dataset, please run:
aws s3 cp s3://spacenet-dataset/spacenet/SN2_buildings/tarballs/SN2_buildings_train_AOI_2_Vegas.tar.gz <root>/SpaceNet/Vegas/
aws s3 cp s3://spacenet-dataset/spacenet/SN2_buildings/tarballs/AOI_2_Vegas_Test_public.tar.gz <root>/SpaceNet/Vegas/

tar xvf <root>/SpaceNet/Vegas/SN2_buildings_train_AOI_2_Vegas.tar.gz
tar xvf <root>/SpaceNet/Vegas/AOI_2_Vegas_Test_public.tar.gz

Converting the Datasets

Please use our provided dataset converters to process the datasets. For all converters, please look at the individual files for an example of how to use them.

  1. For AICrowd, use datasets/converters/cocoAnnotationToMask.py.
  2. For Urban3D, use datasets/converters/urban3dDataConverter.py.
  3. For SpaceNet, use datasets/converters/spaceNetDataConverter.py

Creating the Boundary Weight Maps

In order to train with the exponentially weighted boundary loss, you will need to create the weight maps as a pre-processing step. Please use datasets/converters/weighted_boundary_processor.py and follow the example usage. The inc parameter is specified for computational reasons. Please decrease this value if you notice very high memory usage.

Note: these maps are not required for evaluation / testing.

Training and Evaluation

To train / evaluate the DeepLabV3+ models described in the paper, please use train_deeplab.sh or test_deeplab.sh for your convenience. We employ the following primary command-line arguments:

Parameter Default Description (final argument)
--backbone resnet The DeeplabV3+ backbone (final method used drn_c42)
--out-stride 16 The backbone compression facter (8)
--dataset urban3d The dataset to train / evaluate on (other choices: spaceNet, crowdAI, combined)
--data-root /data/ Please replace this with the root folder of the dataset samples
--workers 2 Number of workers for dataset retrieval
--loss-type ce_dice Type of objective function. Use wce_dice for exponentially weighted boundary loss
--fbeta 1 The beta value to use with the F-Beta Measure (0.5)
--dropout 0.1 0.5 Dropout values to use in the DeepLabV3+ (0.3 0.5)
--epochs None Number of epochs to train (60 for train, 1 for test)
--batch-size None Batch size (3/4)
--test-batch-size None Testing Batch Size (1/4)
--lr 1e-4 Learning Rate (1e-3)
--weight-decay 5e-4 L2 Regularization Constant (1e-4)
--gpu-ids 0 GPU Ids (Use --no-cuda for only CPU)
--checkname None Experiment name
--use-wandb False Track experiment using WandB
--resume None Experiment name to load weights from (i.e. urban for weights/urban/checkpoint.pth.tar)
--evalulate False Enable this flag for testing
--best-miou False Enable this flag to get best results when testing
--incl-bounds False Enable this flag when training with wce_dice as a loss

To train with the cross-task training strategy, you need to:

  1. Train a model using --dataset=combined until the best loss has been achieved
  2. Train a model using --resume=<checkname> on one of the three primary datasets until the best mIoU is achieved

Pre-Trained Weights

We provide pre-trained model weights in the weights/ directory. Please use Git LFS to download these weights. These weights correspond to our best model on all three datasets.

Results

Our final model is a DeepLavV3+ module with a Dilated ResNet C42 backbone trained using the F-Beta Measure + Exponentially Weighted Cross Entropy Loss (Beta = 0.5). We employ the cross-task training strategy only for Urban3D and SpaceNet.

Our model achieves the following:

Dataset Avg. Precision Avg. Recall F1 Score mIoU
Urban3D 83.8% 82.2% 82.4% 83.3%
SpaceNet 91.4% 91.8% 91.6% 90.2%
AICrowd 96.2% 96.3% 96.3% 95.4%

Acknowledgements

We would like to thank jfzhang95 for his DeepLabV3+ model and training template. You can access this repository here

Owner
Aatif Jiwani
Hey! I am Aatif Jiwani, and I am currently a Machine Learning Engineer at C3.ai. Previously, I studied EECS at UC Berkeley and did research at BAIR and LBNL.
Aatif Jiwani
Mmdetection3d Noted - MMDetection3D is an open source object detection toolbox based on PyTorch

MMDetection3D is an open source object detection toolbox based on PyTorch

Jiangjingwen 13 Jan 06, 2023
YOLOv5 detection interface - PyQt5 implementation

所有代码已上传,直接clone后,运行yolo_win.py即可开启界面。 2021/9/29:加入置信度选择 界面是在ultralytics的yolov5基础上建立的,界面使用pyqt5实现,内容较简单,娱乐而已。 功能: 模型选择 本地文件选择(视频图片均可) 开关摄像头

487 Dec 27, 2022
Pytorch implementation of SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation

SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation Efficient Self-Ensemble Framework for Semantic Segmentation by Walid Bousselham

61 Dec 26, 2022
A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data

A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data Overview Clustering analysis is widely utilized in single-cell RNA-seque

AI-Biomed @NSCC-gz 3 May 08, 2022
Hierarchical Cross-modal Talking Face Generation with Dynamic Pixel-wise Loss (ATVGnet)

Hierarchical Cross-modal Talking Face Generation with Dynamic Pixel-wise Loss (ATVGnet) By Lele Chen , Ross K Maddox, Zhiyao Duan, Chenliang Xu. Unive

Lele Chen 218 Dec 27, 2022
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
ICLR21 Tent: Fully Test-Time Adaptation by Entropy Minimization

⛺️ Tent: Fully Test-Time Adaptation by Entropy Minimization This is the official project repository for Tent: Fully-Test Time Adaptation by Entropy Mi

Dequan Wang 204 Dec 25, 2022
Gym-TORCS is the reinforcement learning (RL) environment in TORCS domain with OpenAI-gym-like interface.

Gym-TORCS Gym-TORCS is the reinforcement learning (RL) environment in TORCS domain with OpenAI-gym-like interface. TORCS is the open-rource realistic

naoto yoshida 400 Dec 27, 2022
A CNN implementation using only numpy. Supports multidimensional images, stride, etc.

A CNN implementation using only numpy. Supports multidimensional images, stride, etc. Speed up due to heavy use of slicing and mathematical simplification..

2 Nov 30, 2021
CAMPARI: Camera-Aware Decomposed Generative Neural Radiance Fields

CAMPARI: Camera-Aware Decomposed Generative Neural Radiance Fields Paper | Supplementary | Video | Poster If you find our code or paper useful, please

26 Nov 29, 2022
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

107 Dec 02, 2022
[ACM MM 2021] Multiview Detection with Shadow Transformer (and View-Coherent Data Augmentation)

Multiview Detection with Shadow Transformer (and View-Coherent Data Augmentation) [arXiv] [paper] @inproceedings{hou2021multiview, title={Multiview

Yunzhong Hou 27 Dec 13, 2022
Satellite labelling tool for manual labelling of storm top features such as overshooting tops, above-anvil plumes, cold U/Vs, rings etc.

Satellite labelling tool About this app A tool for manual labelling of storm top features such as overshooting tops, above-anvil plumes, cold U/Vs, ri

Czech Hydrometeorological Institute - Satellite Department 10 Sep 14, 2022
OneFlow is a performance-centered and open-source deep learning framework.

OneFlow OneFlow is a performance-centered and open-source deep learning framework. Latest News Version 0.5.0 is out! First class support for eager exe

OneFlow 4.2k Jan 07, 2023
Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

StochFuzz: A New Solution for Binary-only Fuzzing StochFuzz is a (probabilistically) sound and cost-effective fuzzing technique for stripped binaries.

Zhuo Zhang 164 Dec 05, 2022
From a body shape, infer the anatomic skeleton.

OSSO: Obtaining Skeletal Shape from Outside (CVPR 2022) This repository contains the official implementation of the skeleton inference from: OSSO: Obt

Marilyn Keller 166 Dec 28, 2022
Supplementary materials to "Spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity" by H. Raniwala, S. Krastanov, M. Eichenfield, and D. R. Englund, 2022

Supplementary materials to "Spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity" by H. Raniwala,

Stefan Krastanov 1 Jan 17, 2022
Awesome AI Learning with +100 AI Cheat-Sheets, Free online Books, Top Courses, Best Videos and Lectures, Papers, Tutorials, +99 Researchers, Premium Websites, +121 Datasets, Conferences, Frameworks, Tools

All about AI with Cheat-Sheets(+100 Cheat-sheets), Free Online Books, Courses, Videos and Lectures, Papers, Tutorials, Researchers, Websites, Datasets

Niraj Lunavat 1.2k Jan 01, 2023
PyTorch framework, for reproducing experiments from the paper Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks

Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks. Code, based on the PyTorch framework, for reprodu

Asaf 3 Dec 27, 2022
FaRL for Facial Representation Learning

FaRL for Facial Representation Learning This repo hosts official implementation of our paper General Facial Representation Learning in a Visual-Lingui

Microsoft 19 Jan 05, 2022