Segmentation-Aware Convolutional Networks Using Local Attention Masks

Related tags

Deep Learningsegaware
Overview

Segmentation-Aware Convolutional Networks Using Local Attention Masks

[Project Page] [Paper]

Segmentation-aware convolution filters are invariant to backgrounds. We achieve this in three steps: (i) compute segmentation cues for each pixel (i.e., “embeddings”), (ii) create a foreground mask for each patch, and (iii) combine the masks with convolution, so that the filters only process the local foreground in each image patch.

Installation

For prerequisites, refer to DeepLabV2. Our setup follows theirs almost exactly.

Once you have the prequisites, simply run make all -j4 from within caffe/ to compile the code with 4 cores.

Learning embeddings with dedicated loss

  • Use Convolution layers to create dense embeddings.
  • Use Im2dist to compute dense distance comparisons in an embedding map.
  • Use Im2parity to compute dense label comparisons in a label map.
  • Use DistLoss (with parameters alpha and beta) to set up a contrastive side loss on the distances.

See scripts/segaware/config/embs for a full example.

Setting up a segmentation-aware convolution layer

  • Use Im2col on the input, to arrange pixel/feature patches into columns.
  • Use Im2dist on the embeddings, to get their distances into columns.
  • Use Exp on the distances, with scale: -1, to get them into [0,1].
  • Tile the exponentiated distances, with a factor equal to the depth (i.e., channels) of the original convolution features.
  • Use Eltwise to multiply the Tile result with the Im2col result.
  • Use Convolution with bottom_is_im2col: true to matrix-multiply the convolution weights with the Eltwise output.

See scripts/segaware/config/vgg for an example in which every convolution layer in the VGG16 architecture is made segmentation-aware.

Using a segmentation-aware CRF

  • Use the NormConvMeanfield layer. As input, give it two copies of the unary potentials (produced by a Split layer), some embeddings, and a meshgrid-like input (produced by a DummyData layer with data_filler { type: "xy" }).

See scripts/segaware/config/res for an example in which a segmentation-aware CRF is added to a resnet architecture.

Replicating the segmentation results presented in our paper

  • Download pretrained model weights here, and put that file into scripts/segaware/model/res/.
  • From scripts, run ./test_res.sh. This will produce .mat files in scripts/segaware/features/res/voc_test/mycrf/.
  • From scripts, run ./gen_preds.sh. This will produce colorized .png results in scripts/segaware/results/res/voc_test/mycrf/none/results/VOC2012/Segmentation/comp6_test_cls. An example input-ouput pair is shown below:

- If you zip these results, and submit them to the official PASCAL VOC test server, you will get 79.83900% IOU.

If you run this set of steps for the validation set, you can run ./eval.sh to evaluate your results on the PASCAL VOC validation set. If you change the model, you may want to run ./edit_env.sh to update the evaluation instructions.

Citation

@inproceedings{harley_segaware,
  title = {Segmentation-Aware Convolutional Networks Using Local Attention Masks},
  author = {Adam W Harley, Konstantinos G. Derpanis, Iasonas Kokkinos},
  booktitle = {IEEE International Conference on Computer Vision (ICCV)},
  year = {2017},
}

Help

Feel free to open issues on here! Also, I'm pretty good with email: [email protected]

Scaling and Benchmarking Self-Supervised Visual Representation Learning

FAIR Self-Supervision Benchmark is deprecated. Please see VISSL, a ground-up rewrite of benchmark in PyTorch. FAIR Self-Supervision Benchmark This cod

Meta Research 584 Dec 31, 2022
An example project demonstrating how the Autonomous Learning Library can be used to build new reinforcement learning agents.

About This repository shows how Autonomous Learning Library can be used to build new reinforcement learning agents. In particular, it contains a model

Chris Nota 5 Aug 30, 2022
Generative Models for Graph-Based Protein Design

Graph-Based Protein Design This repo contains code for Generative Models for Graph-Based Protein Design by John Ingraham, Vikas Garg, Regina Barzilay

John Ingraham 159 Dec 15, 2022
Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy.

Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy. Now with tensorflow 1.0 support. Evaluation usa

Marcel R. 349 Aug 06, 2022
The Turing Change Point Detection Benchmark: An Extensive Benchmark Evaluation of Change Point Detection Algorithms on real-world data

Turing Change Point Detection Benchmark Welcome to the repository for the Turing Change Point Detection Benchmark, a benchmark evaluation of change po

The Alan Turing Institute 85 Dec 28, 2022
Neural Magic Eye: Learning to See and Understand the Scene Behind an Autostereogram, arXiv:2012.15692.

Neural Magic Eye Preprint | Project Page | Colab Runtime Official PyTorch implementation of the preprint paper "NeuralMagicEye: Learning to See and Un

Zhengxia Zou 56 Jul 15, 2022
PyTorch implementation of "Transparency by Design: Closing the Gap Between Performance and Interpretability in Visual Reasoning"

Transparency-by-Design networks (TbD-nets) This repository contains code for replicating the experiments and visualizations from the paper Transparenc

David Mascharka 351 Nov 18, 2022
This is the official Pytorch implementation of "Lung Segmentation from Chest X-rays using Variational Data Imputation", Raghavendra Selvan et al. 2020

README This is the official Pytorch implementation of "Lung Segmentation from Chest X-rays using Variational Data Imputation", Raghavendra Selvan et a

Raghav 42 Dec 15, 2022
PyTorch implementation HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections

HoroPCA This code is the official PyTorch implementation of the ICML 2021 paper: HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projec

HazyResearch 52 Nov 14, 2022
Anonymous implementation of KSL

k-Step Latent (KSL) Implementation of k-Step Latent (KSL) in PyTorch. Representation Learning for Data-Efficient Reinforcement Learning [Paper] Code i

1 Nov 10, 2021
:hot_pepper: R²SQL: "Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing." (AAAI 2021)

R²SQL The PyTorch implementation of paper Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing. (AAAI 2021) Requirement

huybery 60 Dec 31, 2022
Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via Generalized Straight-Through Estimation. In CVPR 2022.

Nonuniform-to-Uniform Quantization This repository contains the training code of N2UQ introduced in our CVPR 2022 paper: "Nonuniform-to-Uniform Quanti

Zechun Liu 60 Dec 28, 2022
MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet.

Lightweight-Detection-and-KD MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet. This repo also includes detection knowledge di

Egqawkq 12 Jan 05, 2023
a baseline to practice

ccks2021_track3_baseline a baseline to practice 路径可能会有问题,自己改改 torch==1.7.1 pyhton==3.7.1 transformers==4.7.0 cuda==11.0 this is a baseline, you can fi

45 Nov 23, 2022
Face recognition. Redefined.

FaceFinder Use a powerful CNN to identify faces in images! TABLE OF CONTENTS About The Project Built With Getting Started Prerequisites Installation U

BleepLogger 20 Jun 16, 2021
The ARCA23K baseline system

ARCA23K Baseline System This is the source code for the baseline system associated with the ARCA23K dataset. Details about ARCA23K and the baseline sy

4 Jul 02, 2022
PyTorch implementation for the Neuro-Symbolic Sudoku Solver leveraging the power of Neural Logic Machines (NLM)

Neuro-Symbolic Sudoku Solver PyTorch implementation for the Neuro-Symbolic Sudoku Solver leveraging the power of Neural Logic Machines (NLM). Please n

Ashutosh Hathidara 60 Dec 10, 2022
SOLO and SOLOv2 for instance segmentation, ECCV 2020 & NeurIPS 2020.

SOLO: Segmenting Objects by Locations This project hosts the code for implementing the SOLO algorithms for instance segmentation. SOLO: Segmenting Obj

Xinlong Wang 1.5k Dec 31, 2022
Simulation of moving particles under microscopic imaging

Simulation of moving particles under microscopic imaging Install scipy numpy scikit-image tiffile Run python simulation.py Read result https://imagej

Zehao Wang 2 Dec 14, 2021
A simple pytorch pipeline for semantic segmentation.

SegmentationPipeline -- Pytorch A simple pytorch pipeline for semantic segmentation. Requirements : torch=1.9.0 tqdm albumentations=1.0.3 opencv-pyt

petite7 4 Feb 22, 2022