Code for Multiple Instance Active Learning for Object Detection, CVPR 2021

Overview

Language: 简体中文 | English

Introduction

This is the code for Multiple Instance Active Learning for Object Detection, CVPR 2021.

Illustration

Results

Installation

A Linux platform (Ours are Ubuntu 18.04 LTS) and anaconda3 is recommended, since they can install and manage environments and packages conveniently and efficiently.

A TITAN V GPU and CUDA 10.2 with CuDNN 7.6.5 is recommended, since they can speed up model training.

After anaconda3 installation, you can create a conda environment as below:

conda create -n mial python=3.7 -y
conda activate mial

Please refer to MMDetection v2.3.0 and the install.md of it for environment installation.

Modification in the mmcv Package

To train with two dataloaders (i.e., the labeled set dataloader and the unlabeled set dataloader mentioned in the paper) at the same time, you will need to modify the epoch_based_runner.py in the mmcv package.

Considering that this will affect all code that uses this environment, so we suggest you set up a separate environment for MIAL (i.e., the mialenvironment created above).

cp -v epoch_based_runner.py ~/anaconda3/envs/mial/lib/python3.7/site-packages/mmcv/runner/

Datasets Preparation

Please download VOC2007 datasets ( trainval + test ) and VOC2012 datasets ( trainval ) from:

VOC2007 ( trainval ): http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar

VOC2007 ( test ): http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar

VOC2012 ( trainval ): http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar

And after that, please ensure the file directory tree is as below:

├── VOCdevkit
│   ├── VOC2007
│   │   ├── Annotations
│   │   ├── ImageSets
│   │   ├── JPEGImages
│   ├── VOC2012
│   │   ├── Annotations
│   │   ├── ImageSets
│   │   ├── JPEGImages

You may also use the following commands directly:

cd $YOUR_DATASET_PATH
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
tar -xf VOCtrainval_06-Nov-2007.tar
tar -xf VOCtest_06-Nov-2007.tar
tar -xf VOCtrainval_11-May-2012.tar

After that, please modify the corresponding dataset directory in this repository, they are located in:

Line 1 of configs/MIAL.py: data_root='$YOUR_DATASET_PATH/VOCdevkit/'
Line 1 of configs/_base_/voc0712.py: data_root='$YOUR_DATASET_PATH/VOCdevkit/'

Please change the $YOUR_DATASET_PATHs above to your actual dataset directory (i.e., the directory where you intend to put the downloaded VOC tar file).

And please use the absolute path (i.e., start with /) but not a relative path (i.e., start with ./ or ../).

Training and Test

We recommend you to use a GPU but not a CPU to train and test, because it will greatly shorten the time.

And we also recommend you to use a single GPU, because the usage of multi-GPU may result in errors caused by the multi-processing of the dataloader.

If you use only a single GPU, you can use the script.sh file directly as below:

chmod 777 ./script.sh
./script.sh $YOUR_GPU_ID

Please change the $YOUR_GPU_ID above to your actual GPU ID number (usually a non-negative number).

Please ignore the error rm: cannot remove './log_nohup/nohup_$YOUR_GPU_ID.log': No such file or directory if you run the script.sh file for the first time.

The script.sh file will use the GPU with the ID number $YOUR_GPU_ID and PORT (30000+$YOUR_GPU_ID*100) to train and test.

The log file will not flush in the terminal, but will be saved and updated in the file ./log_nohup/nohup_$YOUR_GPU_ID.log and ./work_dirs/MIAL/$TIMESTAMP.log . These two logs are the same. You can change the directories and names of the latter log files in Line 48 of ./configs/MIAL.py .

You can also use other files in the directory './work_dirs/MIAL/ if you like, they are as follows:

  • JSON file $TIMESTAMP.log.json

    You can load the losses and mAPs during training and test from it more conveniently than from the ./work_dirs/MIAL/$TIMESTAMP.log file.

  • npy file X_L_$CYCLE.npy and X_U_$CYCLE.npy

    The $CYCLE is an integer from 0 to 6, which are the active learning cycles.

    You can load the indexes of the labeled set and unlabeled set for each cycle from them.

    The indexes are the integers from 0 to 16550 for PASCAL VOC datasets, where 0 to 5010 is for PASCAL VOC 2007 trainval set and 5011 to 16550 for PASCAL VOC 2012 trainval set.

    An example code for loading these files is the Line 108-114 in the ./tools/train.py file (which are in comments now).

  • pth file epoch_$EPOCH.pth and latest.pth

    The $EPOCH is an integer from 0 to 2, which are the epochs of the last label set training.

    You can load the model state dictionary from them.

    An example code for loading these files is the Line 109, 143-145 in the ./tools/train.py file (which are in comments now).

  • txt file trainval_L_07.txt, trainval_U_07.txt, trainval_L_12.txt and trainval_U_12.txt in each cycle$CYCLE directory

    The $CYCLE is the same as above.

    You can load the names of JPEG images of the labeled set and unlabeled set for each cycle from them.

    "L" is for the labeled set and "U" is for the unlabeled set. "07" is for the PASCAL VOC 2007 trainval set and "12" is for the PASCAL VOC 2012 trainval set.

Code Structure

├── $YOUR_ANACONDA_DIRECTORY
│   ├── anaconda3
│   │   ├── envs
│   │   │   ├── mial
│   │   │   │   ├── lib
│   │   │   │   │   ├── python3.7
│   │   │   │   │   │   ├── site-packages
│   │   │   │   │   │   │   ├── mmcv
│   │   │   │   │   │   │   │   ├── runner
│   │   │   │   │   │   │   │   │   ├── epoch_based_runner.py
│
├── ...
│
├── configs
│   ├── _base_
│   │   ├── default_runtime.py
│   │   ├── retinanet_r50_fpn.py
│   │   ├── voc0712.py
│   ├── MIAL.py
│── log_nohup
├── mmdet
│   ├── apis
│   │   ├── __init__.py
│   │   ├── test.py
│   │   ├── train.py
│   ├── models
│   │   ├── dense_heads
│   │   │   ├── __init__.py
│   │   │   ├── MIAL_head.py
│   │   │   ├── MIAL_retina_head.py
│   │   │   ├── base_dense_head.py 
│   │   ├── detectors
│   │   │   ├── base.py
│   │   │   ├── single_stage.py
│   ├── utils
│   │   ├── active_datasets.py
├── tools
│   ├── train.py
├── work_dirs
│   ├── MIAL
├── script.sh

The code files and folders shown above are the main part of MIAL, while other code files and folders are created following MMDetection to avoid potential problems.

The explanation of each code file or folder is as follows:

  • epoch_based_runner.py: Code for training and test in each epoch, which can be called by ./apis/train.py.
  • configs: Configuration folder, including running settings, model settings, dataset settings and other custom settings for active learning and MIAL.
    • __base__: Base configuration folder provided by MMDetection, which only need a little modification and then can be recalled by .configs/MIAL.py.
      • default_runtime.py: Configuration code for running settings, which can be called by ./configs/MIAL.py.
      • retinanet_r50_fpn.py: Configuration code for model training and test settings, which can be called by ./configs/MIAL.py.
      • voc0712.py: Configuration code for PASCAL VOC dataset settings and data preprocessing, which can be called by ./configs/MIAL.py.
    • MIAL.py: Configuration code in general including most custom settings, containing active learning dataset settings, model training and test parameter settings, custom hyper-parameter settings, log file and model saving settings, which can be mainly called by ./tools/train.py. The more detailed introduction of each parameter is in the comments of this file.
  • log_nohup: Log folder for storing log output on each GPU temporarily.
  • mmdet: The core code folder for MIAL, including intermidiate training code, object detectors and detection heads and active learning dataset establishment.
    • apis: The inner training, test and calculating uncertainty code folder of MIAL.
      • __init__.py: Some function initialization in the current folder.
      • test.py: Code for testing the model and calculating uncertainty, which can be called by epoch_based_runner.py and ./tools/train.py.
      • train.py: Code for setting random seed and creating training dataloaders to prepare for the following epoch-level training, which can be called by ./tools/train.py.
    • models: The code folder with the details of network model architecture, training loss, forward propagation in test and calculating uncertainty.
      • dense_heads: The code folder of training loss and the network model architecture, especially the well-designed head architecture.
        • __init__.py: Some function initialization in the current folder.
        • MIAL_head.py: Code for forwarding anchor-level model output, calculating anchor-level loss, generating pseudo labels and getting bounding boxes from existing model output in more details, which can be called by ./mmdet/models/dense_heads/base_dense_head.py and ./mmdet/models/detectors/single_stage.py.
        • MIAL_retina_head.py: Code for building the MIAL model architecture, especially the well-designed head architecture, and define the forward output, which can be called by ./mmdet/models/dense_heads/MIAL_head.py.
        • base_dense_head.py: Code for choosing different equations to calculate loss, which can be called by ./mmdet/models/detectors/single_stage.py.
      • detectors: The code folder of the forward propogation and backward propogation in the overall training, test and calculating uncertainty process.
        • base.py: Code for arranging training loss to print and returning the loss and image information, which can be called by epoch_based_runner.py.
        • single_stage.py: Code for extracting image features, getting bounding boxes from the model output and returning the loss, which can be called by ./mmdet/models/detectors/base.py.
    • utils: The code folder for creating active learning datasets.
      • active_dataset.py: Code for creating active learning datasets, including creating initial labeled set, creating the image name file for the labeled set and unlabeled set and updating the labeled set after each active learning cycle, which can be called by ./tools/train.py.
  • tools: The outer training and test code folder of MIAL.
    • train.py: Outer code for training and test for MIAL, including generating PASCAL VOC datasets for active learning, loading image sets and models, Instance Uncertainty Re-weighting and Informative Image Selection in general, which can be called by ./script.sh.
  • work_dirs: Work directory of the index and image name of the labeled set and unlabeled set for each cycle, all log and json outputs and the model state dictionary for the last 3 cycle, which are introduced in the Training and Test part above.
  • script.sh: The script to run MIAL on a single GPU. You can run it to train and test MIAL simply and directly mentioned in the Training and Test part above as long as you have prepared the conda environment and PASCAL VOC 2007+2012 datasets.

If you find this repository useful for your publications, please consider citing our paper.

@inproceedings{MIAL2021,
    author    = {Tianning Yuan and
                 Fang Wan and
                 Mengying Fu and
                 Jianzhuang Liu and
                 Songcen Xu and
                 Xiangyang Ji and
                 Qixiang Ye},
    title     = {Multiple Instance Active Learning for Object Detection},
    booktitle = {CVPR},
    year      = {2021}
}
Owner
Tianning Yuan
A master student of UCAS (University of Chinese Academy of Sciences).
Tianning Yuan
CLIPort: What and Where Pathways for Robotic Manipulation

CLIPort CLIPort: What and Where Pathways for Robotic Manipulation Mohit Shridhar, Lucas Manuelli, Dieter Fox CoRL 2021 CLIPort is an end-to-end imitat

246 Dec 11, 2022
GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot

GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model -- based on GPT-3, called GPT-Codex -- that is fine-tuned on publicly available code from GitHub.

2.3k Jan 09, 2023
Official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021.

Introduction This repository is the official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021. Data-free Kno

NVIDIA Research Projects 50 Jan 05, 2023
Pairwise learning neural link prediction for ogb link prediction

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
Using some basic methods to show linkages and transformations of robotic arms

roboticArmVisualizer Python GUI application to create custom linkages and adjust joint angles. In the future, I plan to add 2d inverse kinematics solv

Sandesh Banskota 1 Nov 19, 2021
Efficient 3D Backbone Network for Temporal Modeling

VoV3D is an efficient and effective 3D backbone network for temporal modeling implemented on top of PySlowFast. Diverse Temporal Aggregation and

102 Dec 06, 2022
A face dataset generator with out-of-focus blur detection and dynamic interval adjustment.

A face dataset generator with out-of-focus blur detection and dynamic interval adjustment.

Yutian Liu 2 Jan 29, 2022
Temporally Coherent GAN SIGGRAPH project.

TecoGAN This repository contains source code and materials for the TecoGAN project, i.e. code for a TEmporally COherent GAN for video super-resolution

Duc Linh Nguyen 2 Jan 18, 2022
Official PyTorch Implementation of Unsupervised Learning of Scene Flow Estimation Fusing with Local Rigidity

UnRigidFlow This is the official PyTorch implementation of UnRigidFlow (IJCAI2019). Here are two sample results (~10MB gif for each) of our unsupervis

Liang Liu 28 Nov 16, 2022
A very lightweight monitoring system for Raspberry Pi clusters running Kubernetes.

OMNI A very lightweight monitoring system for Raspberry Pi clusters running Kubernetes. Why? When I finished my Kubernetes cluster using a few Raspber

Matias Godoy 148 Dec 29, 2022
A PyTorch implementation of " EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks."

EfficientNet A PyTorch implementation of EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. [arxiv] [Official TF Repo] Implemen

AhnDW 298 Dec 10, 2022
A collection of Jupyter notebooks to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

StyleGAN3 CLIP-based guidance StyleGAN3 + CLIP StyleGAN3 + inversion + CLIP This repo is a collection of Jupyter notebooks made to easily play with St

Eugenio Herrera 176 Dec 30, 2022
Customised to detect objects automatically by a given model file(onnx)

LabelImg LabelImg is a graphical image annotation tool. It is written in Python and uses Qt for its graphical interface. Annotations are saved as XML

Heeone Lee 1 Jun 07, 2022
mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms.

mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms. It provides easily interchangeable modeling and planning components, and a set of utility function

Facebook Research 724 Jan 04, 2023
A python script to lookup Passport Index Dataset

visa-cli A python script to lookup Passport Index Dataset Installation pip install visa-cli Usage usage: visa-cli [-h] [-d DESTINATION_COUNTRY] [-f]

rand-net 16 Oct 18, 2022
Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.

Deep Image Search - AI-Based Image Search Engine Deep Image Search is an AI-based image search engine that includes deep transfer learning features Ex

139 Jan 01, 2023
MultiTaskLearning - Multi Task Learning for 3D segmentation

Multi Task Learning for 3D segmentation Perception stack of an Autonomous Drivin

2 Sep 22, 2022
Head and Neck Tumour Segmentation and Prediction of Patient Survival Project

Head-and-Neck-Tumour-Segmentation-and-Prediction-of-Patient-Survival Welcome to the Head and Neck Tumour Segmentation and Prediction of Patient Surviv

5 Oct 20, 2022
NeROIC: Neural Object Capture and Rendering from Online Image Collections

NeROIC: Neural Object Capture and Rendering from Online Image Collections This repository is for the source code for the paper NeROIC: Neural Object C

Snap Research 647 Dec 27, 2022
PRTR: Pose Recognition with Cascade Transformers

PRTR: Pose Recognition with Cascade Transformers Introduction This repository is the official implementation for Pose Recognition with Cascade Transfo

mlpc-ucsd 133 Dec 30, 2022