[NeurIPS 2021] "G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of Teacher Discriminators"

Overview

G-PATE

This is the official code base for our NeurIPS 2021 paper:

"G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of Teacher Discriminators."

Yunhui Long*, Boxin Wang*, Zhuolin Yang, Bhavya Kailkhura, Aston Zhang, Carl A. Gunter, Bo Li

Citation

@article{long2021gpate,
  title={G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of Teacher Discriminators},
  author={Long, Yunhui and Wang, Boxin and Yang, Zhuolin and Kailkhura, Bhavya and Zhang, Aston and Gunter, Carl A. and Li, Bo},
  journal={NeurIPS 2021},
  year={2021}
}

Usage

Prepare your environment

Download required packages

pip install -r requirements.txt

Prepare your data

Please store the training data in $data_dir. By default, $data_dir is set to ../../data.

We provide a script to download the MNIST and Fashion Mnist datasets.

python download.py [dataset_name]

For MNIST, you can run

python download.py mnist

For Fashion-MNIST, you can run

python download.py fashion_mnist

For CelebA datasets, please refer to their official websites for downloading.

Training

python main.py --checkpoint_dir [checkpoint_dir] --dataset [dataset_name] --train

Example of one of our best commands on MNIST:

Given eps=1,

python main.py --checkpoint_dir mnist_teacher_4000_z_dim_50_c_1e-4/ --teachers_batch 40 --batch_teachers 100 --dataset mnist --train --sigma_thresh 3000 --sigma 1000 --step_size 1e-4 --max_eps 1 --nopretrain --z_dim 50 --batch_size 64

By default, after it reaches the max epsilon=1, it will generate 100,000 DP samples as eps-1.00.data.pkl in checkpoint_dir.

Given eps=10,

python main.py --checkpoint_dir mnist_teacher_2000_z_dim_100_eps_10/ --teachers_batch 40 --batch_teachers 50 --dataset mnist --train --sigma_thresh 600 --sigma 100 --step_size 1e-4 --max_eps 10 --nopretrain --z_dim 100 --batch_size 64

By default, after it reaches the max epsilon=10, it will generate 100,000 DP samples as eps-9.9x.data.pkl in checkpoint_dir.

Generating synthetic samples

python main.py --checkpoint_dir [checkpoint_dir] --dataset [dataset_name]

Evaluate the synthetic records

We follow the standard the protocl and train a classifier on synthetic samples and test it on real samples.

For MNIST,

python evaluation/train-classifier-mnist.py --data [DP_data_dir]

For Fashion-MNIST,

python evaluation/train-classifier-fmnist.py --data [DP_data_dir]

For CelebA-Gender,

python evaluation/train-classifier-celebA.py --data [DP_data_dir]

For CelebA-Gender (Small),

python evaluation/train-classifier-small-celebA.py --data [DP_data_dir]

For CelebA-Hair,

python evaluation/train-classifier-hair.py --data [DP_data_dir]

The [DP_data_dir] is where your generated DP samples are located.

In the MNIST example above, we have generated DP samples in $checkpoint_dir/eps-1.00.data.

During evaluation, you should run with DP_data_dir=$checkpoint_dir/eps-1.00.data.

python evaluation/train-classifier-mnist.py --data $checkpoint_dir/eps-1.00.data
Owner
AI Secure
UIUC Secure Learning Lab
AI Secure
Neural network for stock price prediction

neural_network_for_stock_price_prediction Neural networks for stock price predic

2 Feb 04, 2022
Learning Logic Rules for Document-Level Relation Extraction

LogiRE Learning Logic Rules for Document-Level Relation Extraction We propose to introduce logic rules to tackle the challenges of doc-level RE. Equip

41 Dec 26, 2022
Official implementation of SIGIR'2021 paper: "Sequential Recommendation with Graph Neural Networks".

SURGE: Sequential Recommendation with Graph Neural Networks This is our TensorFlow implementation for the paper: Sequential Recommendation with Graph

FIB LAB, Tsinghua University 53 Dec 26, 2022
Source code for our paper "Do Not Trust Prediction Scores for Membership Inference Attacks"

Do Not Trust Prediction Scores for Membership Inference Attacks Abstract: Membership inference attacks (MIAs) aim to determine whether a specific samp

<a href=[email protected]"> 3 Oct 25, 2022
Viperdb - A tiny log-structured key-value database written in pure Python

ViperDB 🐍 ViperDB is a lightweight embedded key-value store written in pure Pyt

17 Oct 17, 2022
"Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices", official implementation

Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices This repository contains the official PyTorch implemen

Yandex Research 21 Oct 18, 2022
An improvement of FasterGICP: Acceptance-rejection Sampling based 3D Lidar Odometry

fasterGICP This package is an improvement of fast_gicp Please cite our paper if possible. W. Jikai, M. Xu, F. Farzin, D. Dai and Z. Chen, "FasterGICP:

79 Dec 31, 2022
Paddle implementation for "Highly Efficient Knowledge Graph Embedding Learning with Closed-Form Orthogonal Procrustes Analysis" (NAACL 2021)

ProcrustEs-KGE Paddle implementation for Highly Efficient Knowledge Graph Embedding Learning with Orthogonal Procrustes Analysis 🙈 A more detailed re

Lincedo Lab 4 Jun 09, 2021
Yggdrasil - A simplistic bot designed to streamline your server experience

Ygggdrasil A simplistic bot designed to streamline your server experience. Desig

Sntx_ 1 Dec 14, 2022
Small repo describing how to use Hugging Face's Wav2Vec2 with PyCTCDecode

🤗 Transformers Wav2Vec2 + PyCTCDecode Introduction This repo shows how 🤗 Transformers can be used in combination with kensho-technologies's PyCTCDec

Patrick von Platen 102 Oct 22, 2022
My solutions for Stanford University course CS224W: Machine Learning with Graphs Fall 2021 colabs (GNN, GAT, GraphSAGE, GCN)

machine-learning-with-graphs My solutions for Stanford University course CS224W: Machine Learning with Graphs Fall 2021 colabs Course materials can be

Marko Njegomir 7 Dec 14, 2022
Face and Body Tracking for VRM 3D models on the web.

Kalidoface 3D - Face and Full-Body tracking for Vtubing on the web! A sequal to Kalidoface which supports Live2D avatars, Kalidoface 3D is a web app t

Rich 257 Jan 02, 2023
InterfaceGAN++: Exploring the limits of InterfaceGAN

InterfaceGAN++: Exploring the limits of InterfaceGAN Authors: Apavou Clément & Belkada Younes From left to right - Images generated using styleGAN and

Younes Belkada 42 Dec 23, 2022
Source-to-Source Debuggable Derivatives in Pure Python

Tangent Tangent is a new, free, and open-source Python library for automatic differentiation. Existing libraries implement automatic differentiation b

Google 2.2k Jan 01, 2023
This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing.

Feedback Prize - Evaluating Student Writing This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing. The

Udbhav Bamba 41 Dec 14, 2022
FCN (Fully Convolutional Network) is deep fully convolutional neural network architecture for semantic pixel-wise segmentation

FCN_via_Keras FCN FCN (Fully Convolutional Network) is deep fully convolutional neural network architecture for semantic pixel-wise segmentation. This

Kento Watanabe 48 Aug 30, 2022
This repository contains the source code of our work on designing efficient CNNs for computer vision

Efficient networks for Computer Vision This repo contains source code of our work on designing efficient networks for different computer vision tasks:

Sachin Mehta 386 Nov 26, 2022
Running Google MoveNet Multipose Tracking models on OpenVINO.

MoveNet MultiPose Tracking on OpenVINO

60 Nov 17, 2022
Repository of best practices for deep learning in Julia, inspired by fastai

FastAI Docs: Stable | Dev FastAI.jl is inspired by fastai, and is a repository of best practices for deep learning in Julia. Its goal is to easily ena

FluxML 532 Jan 02, 2023
Deep Reinforcement Learning for Multiplayer Online Battle Arena

MOBA_RL Deep Reinforcement Learning for Multiplayer Online Battle Arena Prerequisite Python 3 gym-derk Tensorflow 2.4.1 Dotaservice of TimZaman Seed R

Dohyeong Kim 32 Dec 18, 2022