[NeurIPS 2021] "G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of Teacher Discriminators"

Overview

G-PATE

This is the official code base for our NeurIPS 2021 paper:

"G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of Teacher Discriminators."

Yunhui Long*, Boxin Wang*, Zhuolin Yang, Bhavya Kailkhura, Aston Zhang, Carl A. Gunter, Bo Li

Citation

@article{long2021gpate,
  title={G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of Teacher Discriminators},
  author={Long, Yunhui and Wang, Boxin and Yang, Zhuolin and Kailkhura, Bhavya and Zhang, Aston and Gunter, Carl A. and Li, Bo},
  journal={NeurIPS 2021},
  year={2021}
}

Usage

Prepare your environment

Download required packages

pip install -r requirements.txt

Prepare your data

Please store the training data in $data_dir. By default, $data_dir is set to ../../data.

We provide a script to download the MNIST and Fashion Mnist datasets.

python download.py [dataset_name]

For MNIST, you can run

python download.py mnist

For Fashion-MNIST, you can run

python download.py fashion_mnist

For CelebA datasets, please refer to their official websites for downloading.

Training

python main.py --checkpoint_dir [checkpoint_dir] --dataset [dataset_name] --train

Example of one of our best commands on MNIST:

Given eps=1,

python main.py --checkpoint_dir mnist_teacher_4000_z_dim_50_c_1e-4/ --teachers_batch 40 --batch_teachers 100 --dataset mnist --train --sigma_thresh 3000 --sigma 1000 --step_size 1e-4 --max_eps 1 --nopretrain --z_dim 50 --batch_size 64

By default, after it reaches the max epsilon=1, it will generate 100,000 DP samples as eps-1.00.data.pkl in checkpoint_dir.

Given eps=10,

python main.py --checkpoint_dir mnist_teacher_2000_z_dim_100_eps_10/ --teachers_batch 40 --batch_teachers 50 --dataset mnist --train --sigma_thresh 600 --sigma 100 --step_size 1e-4 --max_eps 10 --nopretrain --z_dim 100 --batch_size 64

By default, after it reaches the max epsilon=10, it will generate 100,000 DP samples as eps-9.9x.data.pkl in checkpoint_dir.

Generating synthetic samples

python main.py --checkpoint_dir [checkpoint_dir] --dataset [dataset_name]

Evaluate the synthetic records

We follow the standard the protocl and train a classifier on synthetic samples and test it on real samples.

For MNIST,

python evaluation/train-classifier-mnist.py --data [DP_data_dir]

For Fashion-MNIST,

python evaluation/train-classifier-fmnist.py --data [DP_data_dir]

For CelebA-Gender,

python evaluation/train-classifier-celebA.py --data [DP_data_dir]

For CelebA-Gender (Small),

python evaluation/train-classifier-small-celebA.py --data [DP_data_dir]

For CelebA-Hair,

python evaluation/train-classifier-hair.py --data [DP_data_dir]

The [DP_data_dir] is where your generated DP samples are located.

In the MNIST example above, we have generated DP samples in $checkpoint_dir/eps-1.00.data.

During evaluation, you should run with DP_data_dir=$checkpoint_dir/eps-1.00.data.

python evaluation/train-classifier-mnist.py --data $checkpoint_dir/eps-1.00.data
Owner
AI Secure
UIUC Secure Learning Lab
AI Secure
This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting.

GAN Memory for Lifelong learning This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting. Please consider citing our paper

Miaoyun Zhao 43 Dec 27, 2022
Tools for investing in Python

InvestOps Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction This is a Python package with simple and effective

24 Nov 26, 2022
African language Speech Recognition - Speech-to-Text

Swahili-Speech-To-Text Table of Contents Swahili-Speech-To-Text Overview Scenario Approach Project Structure data: models: notebooks: scripts tests: l

2 Jan 05, 2023
Weighted QMIX: Expanding Monotonic Value Function Factorisation

This repo contains the cleaned-up code that was used in "Weighted QMIX: Expanding Monotonic Value Function Factorisation"

whirl 82 Dec 29, 2022
Degree-Quant: Quantization-Aware Training for Graph Neural Networks.

Degree-Quant This repo provides a clean re-implementation of the code associated with the paper Degree-Quant: Quantization-Aware Training for Graph Ne

35 Oct 07, 2022
The fastai deep learning library

Welcome to fastai fastai simplifies training fast and accurate neural nets using modern best practices Important: This documentation covers fastai v2,

fast.ai 23.2k Jan 07, 2023
This is an open solution to the Home Credit Default Risk challenge 🏡

Home Credit Default Risk: Open Solution This is an open solution to the Home Credit Default Risk challenge 🏡 . More competitions 🎇 Check collection

minerva.ml 427 Dec 27, 2022
Implementation of ResMLP, an all MLP solution to image classification, in Pytorch

ResMLP - Pytorch Implementation of ResMLP, an all MLP solution to image classification out of Facebook AI, in Pytorch Install $ pip install res-mlp-py

Phil Wang 178 Dec 02, 2022
8-week curriculum for AI Builders

curriculum 8-week curriculum for AI Builders สารบัญ บทที่ 1 - Machine Learning คืออะไร บทที่ 2 - ชุดข้อมูลมหัศจรรย์และถิ่นที่อยู่ บทที่ 3 - Stochastic

AI Builders 134 Jan 03, 2023
Code release for Local Light Field Fusion at SIGGRAPH 2019

Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion

1.1k Dec 27, 2022
DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency

[CVPR19] DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency (Oral paper) Authors: Kuang-Jui Hsu, Yen-Yu Lin, Yung-Yu Chuang PDF:

Kuang-Jui Hsu 139 Dec 22, 2022
[SIGGRAPH 2020] Attribute2Font: Creating Fonts You Want From Attributes

Attr2Font Introduction This is the official PyTorch implementation of the Attribute2Font: Creating Fonts You Want From Attributes. Paper: arXiv | Rese

Yue Gao 200 Dec 15, 2022
Learning Continuous Image Representation with Local Implicit Image Function

LIIF This repository contains the official implementation for LIIF introduced in the following paper: Learning Continuous Image Representation with Lo

Yinbo Chen 1k Dec 25, 2022
Set of models for classifcation of 3D volumes

Classification models 3D Zoo - Keras and TF.Keras This repository contains 3D variants of popular CNN models for classification like ResNets, DenseNet

69 Dec 28, 2022
A deep learning framework for historical document image analysis

DIVA-DAF Description A deep learning framework for historical document image analysis. How to run Install dependencies # clone project git clone https

9 Aug 04, 2022
SimplEx - Explaining Latent Representations with a Corpus of Examples

SimplEx - Explaining Latent Representations with a Corpus of Examples Code Author: Jonathan Crabbé ( Jonathan Crabbé 14 Dec 15, 2022

[CVPR 2021] Official PyTorch Implementation for "Iterative Filter Adaptive Network for Single Image Defocus Deblurring"

IFAN: Iterative Filter Adaptive Network for Single Image Defocus Deblurring Checkout for the demo (GUI/Google Colab)! The GUI version might occasional

Junyong Lee 173 Dec 30, 2022
Neural Network Libraries

Neural Network Libraries Neural Network Libraries is a deep learning framework that is intended to be used for research, development and production. W

Sony 2.6k Dec 30, 2022
StarGANv2-VC: A Diverse, Unsupervised, Non-parallel Framework for Natural-Sounding Voice Conversion

StarGANv2-VC: A Diverse, Unsupervised, Non-parallel Framework for Natural-Sounding Voice Conversion Yinghao Aaron Li, Ali Zare, Nima Mesgarani We pres

Aaron (Yinghao) Li 282 Jan 01, 2023
Hydra: an Extensible Fuzzing Framework for Finding Semantic Bugs in File Systems

Hydra: An Extensible Fuzzing Framework for Finding Semantic Bugs in File Systems Paper Finding Semantic Bugs in File Systems with an Extensible Fuzzin

gts3.org (<a href=[email protected])"> 129 Dec 15, 2022