A classification model capable of accurately predicting the price of secondhand cars

Overview

Title: Secondhand-Car-Price-Predictor

-- Project Status: [Completed ]

Project Intro/Objective

The purpose of this project is create a classification model capable of accurately predicting the price of secondhand cars. The data used for model building is open source and has been added to this repository. Most packages used are usually pre-installed in most developed environments and tools like collab, jupyter, etc. This can be useful for people looking to enhance the way the code their predicitve models and efficient ways to deal with tabular data!

Methods Used

  • Inferential Statistics
  • Machine Learning
  • Feature Engineering
  • Predictive Modeling
  • Deep Learning
  • Data Visualization
  • Classification

Technologies

  • Python
  • Pandas, TensorFlow, SkLearn
  • Collab

Project Description

  • This Notebook is based off an open source dataset available on www.kaggle.com where I have created models to predict selling price of second hand cars on the basis of various parameters and attributes! The best score was 92.57% with the best MSE being around 4900
  • All models are subject to betterment with more stringent hyper-parameter tuning. This can be achieved by random selection, brute force methods, etc. Various other classifiers can also be used, but the most standard classifiers have been considered in this notebook.
  • Recommend standard practices for data transformation, outlier detection, and null value substitution have been incorporated in this notebook.
  • Good visualizations have also been shown in the notebook for explaining the importance and significance of certain parameters. It can be easily understood by people coming from non-technical backgrounds. Various parameter tuning and scaling methods are shown that helped me achieve enhanced results!
  • Recommend standard practices for data transformation, outlier detection, and null value substitution have been incorporated in this notebook.
  • This code has been UPVOTED by 10 People, Including Kaggle Grandmasters (Highly recognised people for their achievements in the data science Community). I have received a bronze medal for my code in the community.

Getting Started

One can simply download the notebook and dataset, open in platforms like Jupyter, Collab, and Run each cell to see results! This Python 3 environment comes with many helpful analytics libraries installed It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python For example, here's several helpful packages to load

import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)

Input data files are available in the read-only "../input/" directory For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory

import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))

Contact

Owner
Akarsh Singh
Data Scientist, Grad Student, Avid Researcher in the domains of ML, Deep Learning, and Stats. In a nutshell, I enjoy transforming data into valuable knowledge!
Akarsh Singh
Learn Machine Learning Algorithms by doing projects in Python and R Programming Language

Learn Machine Learning Algorithms by doing projects in Python and R Programming Language. This repo covers all aspect of Machine Learning Algorithms.

Ravi Chaubey 6 Oct 20, 2022
Formulae is a Python library that implements Wilkinson's formulas for mixed-effects models.

formulae formulae is a Python library that implements Wilkinson's formulas for mixed-effects models. The main difference with other implementations li

34 Dec 21, 2022
Simulate & classify transient absorption spectroscopy (TAS) spectral features for bulk semiconducting materials (Post-DFT)

PyTASER PyTASER is a Python (3.9+) library and set of command-line tools for classifying spectral features in bulk materials, post-DFT. The goal of th

Materials Design Group 4 Dec 27, 2022
scikit-fem is a lightweight Python 3.7+ library for performing finite element assembly.

scikit-fem is a lightweight Python 3.7+ library for performing finite element assembly. Its main purpose is the transformation of bilinear forms into sparse matrices and linear forms into vectors.

Tom Gustafsson 297 Dec 13, 2022
PLUR is a collection of source code datasets suitable for graph-based machine learning.

PLUR (Programming-Language Understanding and Repair) is a collection of source code datasets suitable for graph-based machine learning. We provide scripts for downloading, processing, and loading the

Google Research 76 Nov 25, 2022
Nevergrad - A gradient-free optimization platform

Nevergrad - A gradient-free optimization platform nevergrad is a Python 3.6+ library. It can be installed with: pip install nevergrad More installati

Meta Research 3.4k Jan 08, 2023
Model Agnostic Confidence Estimator (MACEST) - A Python library for calibrating Machine Learning models' confidence scores

Model Agnostic Confidence Estimator (MACEST) - A Python library for calibrating Machine Learning models' confidence scores

Oracle 95 Dec 28, 2022
🌊 River is a Python library for online machine learning.

River is a Python library for online machine learning. It is the result of a merger between creme and scikit-multiflow. River's ambition is to be the go-to library for doing machine learning on strea

OnlineML 4k Jan 03, 2023
Case studies with Bayesian methods

Case studies with Bayesian methods

Baze Petrushev 8 Nov 26, 2022
Automatic extraction of relevant features from time series:

tsfresh This repository contains the TSFRESH python package. The abbreviation stands for "Time Series Feature extraction based on scalable hypothesis

Blue Yonder GmbH 7k Jan 06, 2023
Python library which makes it possible to dynamically mask/anonymize data using JSON string or python dict rules in a PySpark environment.

pyspark-anonymizer Python library which makes it possible to dynamically mask/anonymize data using JSON string or python dict rules in a PySpark envir

6 Jun 30, 2022
icepickle is to allow a safe way to serialize and deserialize linear scikit-learn models

icepickle It's a cooler way to store simple linear models. The goal of icepickle is to allow a safe way to serialize and deserialize linear scikit-lea

vincent d warmerdam 24 Dec 09, 2022
Python ML pipeline that showcases mltrace functionality.

mltrace tutorial Date: October 2021 This tutorial builds a training and testing pipeline for a toy ML prediction problem: to predict whether a passeng

Log Labs 28 Nov 09, 2022
Accelerating model creation and evaluation.

EmeraldML A machine learning library for streamlining the process of (1) cleaning and splitting data, (2) training, optimizing, and testing various mo

Yusuf 0 Dec 06, 2021
Scikit learn library models to account for data and concept drift.

liquid_scikit_learn Scikit learn library models to account for data and concept drift. This python library focuses on solving data drift and concept d

7 Nov 18, 2021
Implementation of the Object Relation Transformer for Image Captioning

Object Relation Transformer This is a PyTorch implementation of the Object Relation Transformer published in NeurIPS 2019. You can find the paper here

Yahoo 158 Dec 24, 2022
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

SUN Group @ UMN 28 Aug 03, 2022
A Time Series Library for Apache Spark

Flint: A Time Series Library for Apache Spark The ability to analyze time series data at scale is critical for the success of finance and IoT applicat

Two Sigma 970 Jan 04, 2023
Lightweight Machine Learning Experiment Logging 📖

Simple logging of statistics, model checkpoints, plots and other objects for your Machine Learning Experiments (MLE). Furthermore, the MLELogger comes with smooth multi-seed result aggregation and co

Robert Lange 65 Dec 08, 2022
Tutorial for Decision Threshold In Machine Learning.

Decision-Threshold-ML Tutorial for improve skills: 'Decision Threshold In Machine Learning' (from GeeksforGeeks) by Marcus Mariano For more informatio

0 Jan 20, 2022