A simple and lightweight genetic algorithm for optimization of any machine learning model

Overview

geneticml

Actions Status PyPI License

This package contains a simple and lightweight genetic algorithm for optimization of any machine learning model.

Installation

Use pip to install the package from PyPI:

pip install geneticml

Usage

This package provides a easy way to create estimators and perform the optimization with genetic algorithms. The example below describe in details how to create a simulation with genetic algorithms using evolutionary approach to train a sklearn.neural_network.MLPClassifier. A full list of examples could be found here.

from geneticml.optimizers import GeneticOptimizer
from geneticml.strategy import EvolutionaryStrategy
from geneticml.algorithms import EstimatorBuilder
from metrics import metric_accuracy
from sklearn.neural_network import MLPClassifier
from sklearn.datasets import load_iris

# Creates a custom fit method
def fit(model, x, y):
    return model.fit(x, y)

# Creates a custom predict method
def predict(model, x):
    return model.predict(x)

if __name__ == "__main__":

    seed = 11412

    # Creates an estimator
    estimator = EstimatorBuilder()\
        .of(model_type=MLPClassifier)\
        .fit_with(func=fit)\
        .predict_with(func=predict)\
        .build()

    # Defines a strategy for the optimization
    strategy = EvolutionaryStrategy(
        estimator_type=estimator,
        parameters=parameters,
        retain=0.4,
        random_select=0.1,
        mutate_chance=0.2,
        max_children=2,
        random_state=seed
    )

    # Creates the optimizer
    optimizer = GeneticOptimizer(strategy=strategy)

    # Loads the data
    data = load_iris()

    # Defines the metric
    metric = metric_accuracy
    greater_is_better = True

    # Create the simulation using the optimizer and the strategy
    models = optimizer.simulate(
        data=data.data, 
        target=data.target,
        generations=generations,
        population=population,
        evaluation_function=metric,
        greater_is_better=greater_is_better,
        verbose=True
    )

The estimator is the way you define an algorithm or a class that will be used for model instantiation

estimator = EstimatorBuilder().of(model_type=MLPClassifier).fit_with(func=fit).predict_with(func=predict).build()

You need to speficy a custom fit and predict functions. These functions need to use the same signature than the below ones. This happens because the algorithm is generic and needs to know how to perform the fit and predict functions for the models.

# Creates a custom fit method
def fit(model, x, y):
    return model.fit(x, y)

# Creates a custom predict method
def predict(model, x):
    return model.predict(x)

Custom strategy

You can create custom strategies for the optimizers by extending the geneticml.strategy.BaseStrategy and implementing the execute(...) function.

class MyCustomStrategy(BaseStrategy):
    def __init__(self, estimator_type: Type[BaseEstimator]) -> None:
        super().__init__(estimator_type)

    def execute(self, population: List[Type[T]]) -> List[T]:
        return population

The custom strategies will allow you to create optimization strategies to archive your goals. We currently have the evolutionary strategy but you can define your own :)

Custom optimizer

You can create custom optimizers by extending the geneticml.optimizers.BaseOptimizer and implementing the simulate(...) function.

class MyCustomOptimizer(BaseOptimizer):
    def __init__(self, strategy: Type[BaseStrategy]) -> None:
        super().__init__(strategy)

    def simulate(self, data, target, verbose: bool = True) -> List[T]:
        """
        Generate a network with the genetic algorithm.

        Parameters:
            data (?): The data used to train the algorithm
            target (?): The targets used to train the algorithm
            verbose (bool): True if should verbose or False if not

        Returns:
            (List[BaseEstimator]): A list with the final population sorted by their loss
        """
        estimators = self._strategy.create_population()
        for x in estimators:
            x.fit(data, target)
            y_pred = x.predict(target)
        pass 

Custom optimizers will let you define how you want your algorithm to optimize the selected strategy. You can also combine custom strategies and optimizers to archive your desire objective.

Testing

The following are the steps to create a virtual environment into a folder named "venv" and install the requirements.

# Create virtualenv
python3 -m venv venv
# activate virtualenv
source venv/bin/activate
# update packages
pip install --upgrade pip setuptools wheel
# install requirements
python setup.py install

Tests can be run with python setup.py test when the virtualenv is active.

Contributing

All contributions, bug reports, bug fixes, documentation improvements, enhancements, and ideas are welcome.

A detailed overview on how to contribute can be found in the contributing guide. There is also an overview on GitHub.

If you are simply looking to start working with the geneticml codebase, navigate to the GitHub "issues" tab and start looking through interesting issues. Or maybe through using geneticml you have an idea of your own or are looking for something in the documentation and thinking ‘this can be improved’...you can do something about it!

Feel free to ask questions on the mailing the contributors.

Changelog

1.0.3 - Included pytorch example

1.0.2 - Minor fixes on naming

1.0.1 - README fixes

1.0.0 - First release

You might also like...
Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Python Extreme Learning Machine (ELM) Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques
Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques

Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learning.

CD) in machine learning projectsImplementing continuous integration & delivery (CI/CD) in machine learning projects

CML with cloud compute This repository contains a sample project using CML with Terraform (via the cml-runner function) to launch an AWS EC2 instance

High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

Model Validation Toolkit is a collection of tools to assist with validating machine learning models prior to deploying them to production and monitoring them after deployment to production.

Model Validation Toolkit is a collection of tools to assist with validating machine learning models prior to deploying them to production and monitoring them after deployment to production.

Iris-Heroku - Putting a Machine Learning Model into Production with Flask and Heroku
Iris-Heroku - Putting a Machine Learning Model into Production with Flask and Heroku

Puesta en Producción de un modelo de aprendizaje automático con Flask y Heroku L

DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective. 10x Larger Models 10x Faster Trainin

Machine Learning Model to predict the payment date of an invoice when it gets created in the system.

Payment-Date-Prediction Machine Learning Model to predict the payment date of an invoice when it gets created in the system.

Python package for machine learning for healthcare using a OMOP common data model

This library was developed in order to facilitate rapid prototyping in Python of predictive machine-learning models using longitudinal medical data from an OMOP CDM-standard database.

Comments
  • feature/data_sampling

    feature/data_sampling

    We added support to run your own data sampling (e.g., imblearn.SMOTE) and use the genetic algorithms to find the best set parameters for them. Also, you can find the best set of parameters for your machine learning model at same time that find the best minority class size that maximizes the model score

    opened by albarsil 0
Releases(1.0.8)
Owner
Allan Barcelos
Allan Barcelos
A Python-based application demonstrating various search algorithms, namely Depth-First Search (DFS), Breadth-First Search (BFS), and A* Search (Manhattan Distance Heuristic)

A Python-based application demonstrating various search algorithms, namely Depth-First Search (DFS), Breadth-First Search (BFS), and the A* Search (using the Manhattan Distance Heuristic)

17 Aug 14, 2022
Summer: compartmental disease modelling in Python

Summer: compartmental disease modelling in Python Summer is a Python-based framework for the creation and execution of compartmental (or "state-based"

6 May 13, 2022
Iris-Heroku - Putting a Machine Learning Model into Production with Flask and Heroku

Puesta en Producción de un modelo de aprendizaje automático con Flask y Heroku L

Jesùs Guillen 1 Jun 03, 2022
Price Prediction model is used to develop an LSTM model to predict the future market price of Bitcoin and Ethereum.

Price Prediction model is used to develop an LSTM model to predict the future market price of Bitcoin and Ethereum.

2 Jun 14, 2022
Course files for "Ocean/Atmosphere Time Series Analysis"

time-series This package contains all necessary files for the course Ocean/Atmosphere Time Series Analysis, an introduction to data and time series an

Jonathan Lilly 107 Nov 29, 2022
A pure-python implementation of the UpSet suite of visualisation methods by Lex, Gehlenborg et al.

pyUpSet A pure-python implementation of the UpSet suite of visualisation methods by Lex, Gehlenborg et al. Contents Purpose How to install How it work

288 Jan 04, 2023
Binary Classification Problem with Machine Learning

Binary Classification Problem with Machine Learning Solving Approach: 1) Ultimate Goal of the Assignment: This assignment is about solving a binary cl

Dinesh Mali 0 Jan 20, 2022
Python package for stacking (machine learning technique)

vecstack Python package for stacking (stacked generalization) featuring lightweight functional API and fully compatible scikit-learn API Convenient wa

Igor Ivanov 671 Dec 25, 2022
Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on Kubernetes simple, portable, and scalable.

SDK: Overview of the Kubeflow pipelines service Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on

Kubeflow 3.1k Jan 06, 2023
Python library for multilinear algebra and tensor factorizations

scikit-tensor is a Python module for multilinear algebra and tensor factorizations

Maximilian Nickel 394 Dec 09, 2022
Stats, linear algebra and einops for xarray

xarray-einstats Stats, linear algebra and einops for xarray ⚠️ Caution: This project is still in a very early development stage Installation To instal

ArviZ 30 Dec 28, 2022
High performance Python GLMs with all the features!

High performance Python GLMs with all the features!

QuantCo 200 Dec 14, 2022
Examples and code for the Practical Machine Learning workshop series

Practical Machine Learning Workshop Series Practical Machine Learning for Quantitative Finance Post conference workshop at the WBS Spring Conference D

CompatibL 21 Jun 25, 2022
Warren - Stock Price Predictor

Web app to predict closing stock prices in real time using Facebook's Prophet time series algorithm with a multi-variate, single-step time series forecasting strategy.

Kumar Nityan Suman 153 Jan 03, 2023
A data preprocessing and feature engineering script for a machine learning pipeline is prepared.

FEATURE ENGINEERING Business Problem: A data preprocessing and feature engineering script for a machine learning pipeline needs to be prepared. It is

Pinar Oner 7 Dec 18, 2021
Xeasy-ml is a packaged machine learning framework.

xeasy-ml 1. What is xeasy-ml Xeasy-ml is a packaged machine learning framework. It allows a beginner to quickly build a machine learning model and use

9 Mar 14, 2022
Highly interpretable classifiers for scikit learn, producing easily understood decision rules instead of black box models

Highly interpretable, sklearn-compatible classifier based on decision rules This is a scikit-learn compatible wrapper for the Bayesian Rule List class

Tamas Madl 482 Nov 19, 2022
This is the code repository for LRM Stochastic watershed model.

LRM-Squannacook Input data for generating stochastic streamflows are observed and simulated timeseries of streamflow. their format needs to be CSV wit

1 Feb 14, 2022
BudouX is the successor to Budou, the machine learning powered line break organizer tool.

BudouX Standalone. Small. Language-neutral. BudouX is the successor to Budou, the machine learning powered line break organizer tool. It is standalone

Google 868 Jan 05, 2023
Implementation of linesearch Optimization Algorithms in Python

Nonlinear Optimization Algorithms During my time as Scientific Assistant at the Karlsruhe Institute of Technology (Germany) I implemented various Opti

Paul 3 Dec 06, 2022