simple way to build the declarative and destributed data pipelines with python

Overview

unipipeline

simple way to build the declarative and distributed data pipelines.

Why you should use it

  • Declarative strict config
  • Scaffolding
  • Fully typed
  • Python support 3.6+
  • Brokers support
    • kafka
    • rabbitmq
    • inmemory simple pubsub
  • Interruption handling = safe user code transactions
  • CLI

How to Install

$ pip3 install unipipeline

Example

# dag.yml
---

service:
  name: "example"
  echo_colors: true
  echo_level: error


external:
  service_name: {}


brokers:
  default_broker:
    import_template: "unipipeline.brokers.uni_memory_broker:UniMemoryBroker"

  ender_broker:
    import_template: "example.brokers.uni_log_broker:LogBroker"


messages:
  __default__:
    import_template: "example.messages.{{name}}:{{name|camel}}"

  input_message: {}

  inetermediate_message: {}

  ender_message: {}


cron:
  my_super_task:
    worker: my_super_cron_worker
    when: 0/1 * * * *

  my_mega_task:
    worker: my_super_cron_worker
    when: 0/2 * * * *

  my_puper_task:
    worker: my_super_cron_worker
    when: 0/3 * * * *


waitings:
  __default__:
    import_template: example.waitings.{{name}}_wating:{{name|camel}}Waiting

  common_db: {}


workers:
  __default__:
    import_template: "example.workers.{{name}}:{{name|camel}}"

  my_super_cron_worker:
    input_message: uni_cron_message

  input_worker:
    input_message: input_message
    waiting_for:
      - common_db

  intermediate_first_worker:
    input_message: inetermediate_message
    output_workers:
      - ender_second_worker
    waiting_for:
      - common_db

  intermediate_second_worker:
    input_message: inetermediate_message
    external: service_name
    output_workers:
      - ender_frist_worker

  ender_frist_worker:
    input_message: ender_message

  ender_second_worker:
    input_message: ender_message
    broker: ender_broker
    waiting_for:
      - common_db

Get Started

  1. create ./unipipeline.yml such as example above

  2. run cli command

unipipeline -f ./unipipeline.yml scaffold

It should create all structure of your workers, brokers and so on

  1. remove error raising from workers

  2. correct message structure for make more usefull

  3. correct broker connection (if need)

  4. run cli command to run your consumer

unipipeline -f ./unipipeline.yml consume input_worker

or with python

from unipipeline import Uni
u = Uni(f'./unipipeline.yml')
u.init_consumer_worker(f'input_worker')
u.initialize()
u.start_consuming()
  1. produce some message to the message broker by your self or with tools
unipipeline -f ./unipipeline.yml produce --worker input_worker --data='{"some": "prop"}'

or with python

# main.py
from unipipeline import Uni

u = Uni(f'./unipipeline.yml')
u.init_producer_worker(f'input_worker')
u.initialize()
u.send_to(f'input_worker', dict(some='prop'))

Definition

Service

service:
  name: some_name       # need for health-check file name
  echo_level: warning   # level of uni console logs (debug, info, warning, error)
  echo_colors: true     # show colors in console

External

external:
  some_name_of_external_service: {}
  • no props

  • it needs for declarative grouping the external workers with service

Worker

workers:
  __default__:                                        # each worker get this default props if defined
    retry_max_count: 10
    
  some_worker_name:
    retry_max_count: 3                                # just counter. message move to /dev/null if limit has reached 
    retry_delay_s: 1                                  # delay before retry
    topic: "{{name}}"                                 # template string
    error_payload_topic: "{{topic}}__error__payload"  # template string
    error_topic: "{{topic}}__error"                   # template string
    broker: "default_broker"                          # broker name. reference to message transport 
    external: null                                    # name of external service. reference in this config file 
    ack_after_success: true                           # automatic ack after process message
    waiting_for:                                      # list of references
      - some_waiting_name                             # name of block. this worker must wait for connection of this external service if need
    output_workers:                                   # list of references
      - some_other_worker_name                        # allow worker sending messages to this worker
    
    inport_template: "some.module.hierarchy.to.worker.{{name}}:{{name|camel}}OfClass"   # required module and classname for import

    input_message: "name_of_message"                  # required reference of input message type 

Waiting

waitings:
  some_blocked_service_name:
    retry_max_count: 3                         # the same semantic as worker.retry_max_count
    retry_delay_s: 10                          # the same semantic as worker.retry_delay_s
    import_template: "some.module:SomeClass"   # required. the same semantic as worker.import_template

Broker

brokers:
  some_name_of_broker:
    retry_max_count: 3                         # the same semantic as worker.retry_max_count
    retry_delay_s: 10                          # the same semantic as worker.retry_delay_s
    content_type: application/json             # content type
    compression: null                          # compression (null, application/x-gzip, application/x-bz2, application/x-lzma)
    import_template: "some.module:SomeClass"   # required. the same semantic as worker.import_template

Message

messages:
  name_of_message:
    import_template: "some.module:SomeClass"   # required. the same semantic as worker.import_template

build in messages:

messages:
  uni_cron_message:
    import_template: unipipeline.messages.uni_cron_message:UniCronMessage

CLI

unipipeline

usage: unipipeline --help

UNIPIPELINE: simple way to build the declarative and distributed data pipelines. this is cli tool for unipipeline

positional arguments:
  {check,scaffold,init,consume,cron,produce}
                        sub-commands
    check               check loading of all modules
    scaffold            create all modules and classes if it is absent. no args
    init                initialize broker topics for workers
    consume             start consuming workers. connect to brokers and waiting for messages
    cron                start cron jobs, That defined in config file
    produce             publish message to broker. send it to worker

optional arguments:
  -h, --help            show this help message and exit
  --config-file CONFIG_FILE, -f CONFIG_FILE
                        path to unipipeline config file (default: ./unipipeline.yml)
  --verbose [VERBOSE]   verbose output (default: false)

unipipeline check

usage: 
    unipipeline -f ./unipipeline.yml check
    unipipeline -f ./unipipeline.yml --verbose=yes check

check loading of all modules

optional arguments:
  -h, --help  show this help message and exit

unipipeline init

usage: 
    unipipeline -f ./unipipeline.yml init
    unipipeline -f ./unipipeline.yml --verbose=yes init
    unipipeline -f ./unipipeline.yml --verbose=yes init --workers some_worker_name_01 some_worker_name_02

initialize broker topics for workers

optional arguments:
  -h, --help            show this help message and exit
  --workers INIT_WORKERS [INIT_WORKERS ...], -w INIT_WORKERS [INIT_WORKERS ...]
                        workers list for initialization (default: [])

unipipeline scaffold

usage: 
    unipipeline -f ./unipipeline.yml scaffold
    unipipeline -f ./unipipeline.yml --verbose=yes scaffold

create all modules and classes if it is absent. no args

optional arguments:
  -h, --help  show this help message and exit

unipipeline consume

usage: 
    unipipeline -f ./unipipeline.yml consume
    unipipeline -f ./unipipeline.yml --verbose=yes consume
    unipipeline -f ./unipipeline.yml consume --workers some_worker_name_01 some_worker_name_02
    unipipeline -f ./unipipeline.yml --verbose=yes consume --workers some_worker_name_01 some_worker_name_02

start consuming workers. connect to brokers and waiting for messages

optional arguments:
  -h, --help            show this help message and exit
  --workers CONSUME_WORKERS [CONSUME_WORKERS ...], -w CONSUME_WORKERS [CONSUME_WORKERS ...]
                        worker list for consuming

unipipeline produce

usage: 
    unipipeline -f ./unipipeline.yml produce --worker some_worker_name_01 --data {"some": "json", "value": "for worker"}
    unipipeline -f ./unipipeline.yml --verbose=yes produce --worker some_worker_name_01 --data {"some": "json", "value": "for worker"}
    unipipeline -f ./unipipeline.yml produce --alone --worker some_worker_name_01 --data {"some": "json", "value": "for worker"}
    unipipeline -f ./unipipeline.yml --verbose=yes produce --alone --worker some_worker_name_01 --data {"some": "json", "value": "for worker"}

publish message to broker. send it to worker

optional arguments:
  -h, --help            show this help message and exit
  --alone [PRODUCE_ALONE], -a [PRODUCE_ALONE]
                        message will be sent only if topic is empty
  --worker PRODUCE_WORKER, -w PRODUCE_WORKER
                        worker recipient
  --data PRODUCE_DATA, -d PRODUCE_DATA
                        data for sending

unipipeline cron

usage: 
    unipipeline -f ./unipipeline.yml cron
    unipipeline -f ./unipipeline.yml --verbose=yes cron

start cron jobs, That defined in config file

optional arguments:
  -h, --help  show this help message and exit

Contributing

TODO LIST

  1. RPC Gateways: http, tcp, udp
  2. Close/Exit uni by call method
  3. Async producer
  4. Common Error Handling
  5. Async get_answer
  6. Server of Message layout
  7. Prometheus api
  8. req/res Sdk
  9. request tasks result registry
  10. Async consumer
  11. Async by default
  12. Multi-threading start with run-groups
Owner
aliaksandr-master
aliaksandr-master
Pyspark Spotify ETL

This is my first Data Engineering project, it extracts data from the user's recently played tracks using Spotify's API, transforms data and then loads it into Postgresql using SQLAlchemy engine. Data

16 Jun 09, 2022
WaveFake: A Data Set to Facilitate Audio DeepFake Detection

WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper

Chair for Sys­tems Se­cu­ri­ty 27 Dec 22, 2022
PCAfold is an open-source Python library for generating, analyzing and improving low-dimensional manifolds obtained via Principal Component Analysis (PCA).

PCAfold is an open-source Python library for generating, analyzing and improving low-dimensional manifolds obtained via Principal Component Analysis (PCA).

Burn Research 4 Oct 13, 2022
An experimental project I'm undertaking for the sole purpose of increasing my Python knowledge

5ePy is an experimental project I'm undertaking for the sole purpose of increasing my Python knowledge. #Goals Goal: Create a working, albeit lightwei

Hayden Covington 1 Nov 24, 2021
Bamboolib - a GUI for pandas DataFrames

Community repository of bamboolib bamboolib is joining forces with Databricks. For more information, please read our announcement. Please note that th

Tobias Krabel 863 Jan 08, 2023
MIR Cheatsheet - Survival Guidebook for MIR Researchers in the Lab

MIR Cheatsheet - Survival Guidebook for MIR Researchers in the Lab

SeungHeonDoh 3 Jul 02, 2022
General Assembly's 2015 Data Science course in Washington, DC

DAT8 Course Repository Course materials for General Assembly's Data Science course in Washington, DC (8/18/15 - 10/29/15). Instructor: Kevin Markham (

Kevin Markham 1.6k Jan 07, 2023
PySpark Structured Streaming ROS Kafka ApacheSpark Cassandra

PySpark-Structured-Streaming-ROS-Kafka-ApacheSpark-Cassandra The purpose of this project is to demonstrate a structured streaming pipeline with Apache

Zekeriyya Demirci 5 Nov 13, 2022
PATC: Introduction to Big Data Analytics. Practical Data Analytics for Solving Real World Problems

PATC: Introduction to Big Data Analytics. Practical Data Analytics for Solving Real World Problems

1 Feb 07, 2022
NumPy and Pandas interface to Big Data

Blaze translates a subset of modified NumPy and Pandas-like syntax to databases and other computing systems. Blaze allows Python users a familiar inte

Blaze 3.1k Jan 05, 2023
Data Intelligence Applications - Online Product Advertising and Pricing with Context Generation

Data Intelligence Applications - Online Product Advertising and Pricing with Context Generation Overview Consider the scenario in which advertisement

Manuel Bressan 2 Nov 18, 2021
MDAnalysis is a Python library to analyze molecular dynamics simulations.

MDAnalysis Repository README [*] MDAnalysis is a Python library for the analysis of computer simulations of many-body systems at the molecular scale,

MDAnalysis 933 Dec 28, 2022
Tkinter Izhikevich Neuron Model With Python

TKINTER IZHIKEVICH NEURON MODEL WITH PYTHON Hodgkin-Huxley Model It is a mathematical model for the generation and transmission of action potentials i

Rabia KOÇ 8 Jul 16, 2022
pyETT: Python library for Eleven VR Table Tennis data

pyETT: Python library for Eleven VR Table Tennis data Documentation Documentation for pyETT is located at https://pyett.readthedocs.io/. Installation

Tharsis Souza 5 Nov 19, 2022
A pipeline that creates consensus sequences from a Nanopore reads. I

A pipeline that creates consensus sequences from a Nanopore reads. It clusters reads that are similar to each other and creates a consensus that is then identified using BLAST.

Ada Madejska 2 May 15, 2022
DefAP is a program developed to facilitate the exploration of a material's defect chemistry

DefAP is a program developed to facilitate the exploration of a material's defect chemistry. A large number of features are provided and rapid exploration is supported through the use of autoplotting

6 Oct 25, 2022
Functional tensors for probabilistic programming

Funsor Funsor is a tensor-like library for functions and distributions. See Functional tensors for probabilistic programming for a system description.

208 Dec 29, 2022
A multi-platform GUI for bit-based analysis, processing, and visualization

A multi-platform GUI for bit-based analysis, processing, and visualization

Mahlet 529 Dec 19, 2022
MoRecon - A tool for reconstructing missing frames in motion capture data.

MoRecon - A tool for reconstructing missing frames in motion capture data.

Yuki Nishidate 38 Dec 03, 2022
ETL pipeline on movie data using Python and postgreSQL

Movies-ETL ETL pipeline on movie data using Python and postgreSQL Overview This project consisted on a automated Extraction, Transformation and Load p

Juan Nicolas Serrano 0 Jul 07, 2021